Distribution, Habitat Preferences, and Landscape Genetics of Appalachian Cottontail (*Sylvilagus obscurus*) in Western North Carolina

COOPERATIVE AGREEMENT-WM-0323 Final Report June 2020

Joseph J. Apodaca Tangled Bank Conservation, LLC, Asheville, NC

Corinne A. Diggins Dept. of Fish & Wildlife Conservation, Virginia Tech, Blacksburg, VA

Liesl Erb Depts. of Biology & Environmental Studies, Warren Wilson College, Swannanoa, NC

Introduction

The Appalachian cottontail (*Sylvilagus obscurus*) is a medium-size rabbit native to the eastern United States and is distributed along the Appalachian Mountains south of the Hudson River in New York to northern Alabama (Chapman et al. 1992, Chapman 2007, Barry 2018, Edelman 2019). Appalachian cottontails were originally considered the same species as the New England cottontails (*S. transitionalis*) until they were determined to be genetically and morphologically separate species (Chapman et al. 1992). Appalachian cottontails are considered a Species of Concern by the U.S. Fish and Wildlife Service and are classified as vulnerable to critically imperiled throughout most of its range (Chapman 2007, NatureServe 2015). Additionally, the Appalachian cottontail is considered Near Threatened by the International Union for Conservation of Nature (IUCN; Barry and Lazell 2008). Within North Carolina, Appalachian cottontails are listed as a vulnerable species and are considered a Knowledge Gap Priority Species (NCWRC 2015).

Typically referred to as a cold-adapted, high-elevation specialist, Appalachian cottontails are usually associated with red spruce (*Picea rubens*) forests, northern hardwood forests, shrub balds, and ericaceous heath balds, although, at lower elevation sites, white pine-hemlock and oak hickory forests are also used by this species (Webster et al. 1985, Chapman et al. 1992, Chapman 2007). The majority of work on this species has been limited to western Maryland and West Virginia (Stevens and Barry 2002, Boyce and Barry 2007, Hartman and Barry 2010), while studies in the southern proportion of its range have been opportunistic or limited in scope (Blymyer 1976, Russell et al. 1999). Additionally, this species is found at lower elevations in Georgia, Alabama, and Kentucky (Sole 1999, Russell et al. 1999, Chapman 2007), indicating that this species is not restricted to high-elevation habitats within North Carolina. Habitat selection and home range estimates for this species in the southern proportion of its range are currently inferred from northern populations.

Appalachian cottontails are known to overlap with eastern cottontails (*S. floridanus*), although the geographic distribution of sympatry is unknown for the majority of the range of Appalachian cottontails. This may be due to the fact that the distribution of Appalachian cottontails is not well documented and is typically limited to county records (Campbell et al. 2010). While eastern cottontails are the most common species of rabbit east of the Rocky Mountains, their distribution within the southern Appalachian Mountains is also not well documented, limiting data on where these two species are sympatric or parapatric. Eastern cottontails are thought to compete with New England cottontails in habitats where they are sympatric (Probert and Litvaitis 1996, Fuller and Tur 2012). Currently there is no evidence of hybridization between eastern cottontails and New England or Appalachian cottontails (Litvaitis et al. 1997, Fuller and Tur 2012). Additionally, it is unknown if habitat competition occurs between eastern and Appalachian cottontails where they are sympatric.

Populations of the Appalachian cottontail are assumed to be declining in many parts of their range. However, the population status and trends in the majority of this species' range, including North Carolina, are unknown, making estimates of the rate at which the species is declining uncertain (Barry and Lazell 2008). Threats to the species are thought to include habitat fragmentation, indirect displacement by eastern cottontail, non-species specific hunting regulations, and lack of knowledge about the species (Barry and Lazell 2008). In order to better understand and better manage Appalachian cottontail populations, research on habitat preferences, distribution, and fragmentation effects on population genetics are needed. Studies from the northern part of the Appalachian cottontail's range and the much more complete body

of literature on the New England cottontail have informed projections of the Appalachian cottontail's distribution in North Carolina (Southeast GAP Analysis Program 2011), but these models have not been verified. To the best of our knowledge, there have been no population genetic or habitat selection studies on this species in North Carolina.

Purpose

The purpose of this grant was to conduct a 2-year research project investigating the distribution, habitat preferences, and population genetic structure of the Appalachian cottontail in western North Carolina. Results from this study were aimed at improving the knowledge available to aid the North Carolina Wildlife Resource Commission's management of this species.

Objectives

Assessed habitat selection using scat samples from scat transect surveys and telemetry data from radio-collared individuals in western North Carolina. We estimated home range size from radio-collared individuals. From these data, we created a predictive occupancy map of Appalachian cottontail within the southern Appalachians. These data were used to 1) determine the distribution of Appalachian cottontail within western North Carolina, 2) highlight potential survey areas for monitoring, and 3) determine habitat preferences to guide in habitat management, especially in currently managed areas such as the Roan Mountain Highlands grassy balds.

 Conducted a genetic analysis on Appalachian cottontail with ear punches from live captured individuals and scat collected from scat transects to determine 1) population genetic structure and migration patterns of Appalachian cottontails in western North Carolina, 2) potential hybridization with the sympatric eastern cottontail, and 3) estimates of parameters of identified populations (i.e. effective population size, genetic diversity, inbreeding levels, etc.). Understanding population size, gene flow between populations, and potential hybridization with eastern cottontails is important in determining management objectives for the species. Additionally, these data were used to determine impacts that habitat modification and climate change are having on eastern cottontail encroachment into Appalachian cottontail habitat.

Methods

Study Area

Our study occurred in the Blue Ridge Mountain subregion of the southern Appalachian physiographic province in western North Carolina. This region is defined by deep valleys and high peaks and ridgelines. Habitats within the region range from high-elevation montane red spruce (*Picea rubens*) - Fraser fir (*Abies fraserii*) forests to low elevation oak (*Quercus* spp.) and white pine (*Pinus strobus*) - hemlock (*Tsgua* spp.) forests. The majority of sites in this study were second-growth and had been logged and/or burned during the industrial logging period at the turn of the 20th century. The only old-growth forest we surveyed was in Great Smoky Mountains National Park.

Scat Surveys

We employed scat surveys to assess large scale habitat use and preferences of Appalachian cottontail. Between May 2016 and March 2019, we conducted 227 scat surveys along 90 m transects spaced a minimum of 250 m apart at elevations ranging from 383 to 2006 m elevation. Focal study periods included May-June 2016, April 2017, March 2018, and Jan-Mar 2019. Our transects included surveys of xeric and montane oak forests, lowland cove forest, northern hardwood forest, spruce-fir forest and grass and shrub balds (Figure 1). Each transect included 10 plots of 2 m radius each, spaced 10 m apart. Transects were marked with a GPS and each 2 m radius plot was exhaustively searched for rabbit scat. We counted all scat appearing fresh (retaining a slight green or dark brown, rather than light tan color) and in clear clumps of pellets as a single scat detection, and all such clumps were tallied for each plot, with pellet clump counts serving as an index of rabbit use of each plot. We used all fresh samples for genetic analysis (see *Genetic Analysis* section below), and we only used those identified as Appalachian cottontail for spatial distribution modeling. In addition to transect-generated scat samples, fresh fecal samples were opportunistically collected as they were discovered during the other sampling efforts of this project. These samples were only used for population genetics and species distribution modeling efforts.

Figure 1. Location of scat transects for Appalachian cottontail (*Sylvilagus obscurus*) conducted in 2016, 2017, 2018, and 2019 in western North Carolina. GSMNP = Great Smoky Mountains National Park.

Opportunistic Roadkill Specimens

We obtained additional specimens by collecting roadkill samples and obtaining samples from state and federal partners (Table 1). We identified species by pelage characteristics and, if possible, measured ear length and hind foot length. We then collected 2 ear punch samples using a 2mm ear punch(Fine Science Tools, Inc., Foster City, CA; see *Genetic Analysis* section). For roadkill specimens, we collected genetic material, took measurements, and recorded the location of the roadkill but left the roadkill on the shoulder of the road by the location of death. For specimens collected by partners, we took genetic materials and measurements but returned specimens to the partners that originally collected them.

Live Trapping

To obtain live captures, we used Tomahawk live traps (Model 205; 26L x 9W x 9H cm; Tomahawk Live Trap Co., Hazelhurst, WI) to capture individual rabbits. During spring and fall of 2018 and fall 2019, we focused trapping effort at 4 high elevation sites and 3 low elevation sites (Figure 2). High-elevation sites were 1,500 - 2,000 m in elevation. Habitat at high-elevation sites included spruce-fir, northern hardwood, grassy balds, shrub balds, and heath balds. Sprucefir forests were composed of red spruce, Fraser fir, yellow birch (Betula alleghaniensis), and mountain ash (Sorbus americana). Northern hardwood forests were composed of yellow birch, American beech (Fagus grandifolia), sugar maple (Acer saccharum), and yellow buckeye (Aesculus flava) in the overstory. Grassy balds were dominated by mountain oat grass (Danthonia compressa), as well as red sorrel (Rumex acetosella) and dwarf cinquefoil (Potentilla candadensis). Shrub balds were dominated by Allegheny blackberry (Rubus allegheniensis). Heath balds were mainly composed of Catawba rhododendron (Rhododendron catawbiense), mountain azalea (Kalmia latifolia), flame azalea, and blueberries (Vaccinium spp.). Low elevation sites ranged between 980-1,220 m in elevation. Habitat at low elevation sites included early successional habitat, oak, and pine-hemlock forests. Early successional habitat Oak forests are dominated by northern red oak (Q. rubra), white oak (Q. alba), chestnut oak (Q. prinus), scarlet oak (Q. coccinea), and red maple (Acer rubrum). Pine-hemlock forests are composed of white pine and eastern hemlock (T. canadensis) or Carolina helmock (T. caroliniana), typically with an understory of rhododendron. We opportunistically placed traps at sites, focusing on locations with understory cover to increase potential capture success. We covered traps with plastic wrap and duct tape and placed polyfil batting into each trap to reduce potential trap stress and hypothermia. We baited traps with apples. We did not set traps in inclement weather (i.e., heavy rain, snow storms), as these weather events might increase potential trap-induced mortality or restrict access to trapping sites at higher-elevations. We set traps 30-60 minutes before dusk and checked at dawn. We kept traps closed during the day due to low capture rates of Appalachian cottontails during daytime sessions as well as to to prevent potential heat stress of captures.

We removed individuals from traps and placed them in a cotton pillowcase, which kept the cottontail calm and prevented injury. We aged, sexed, measured (weight, ear length, right rear foot), and ear tagged each individual. We used self-piercing 1005-3 Monel ear tags (National Band and Tag Co., Newport, KY) for ear tagging. We differentiated Appalachian cottontails from eastern cottontails via pelage characteristics by using the field methods described by Livaitis et al. (1991). We took genetic samples using a 2 mm ear punch (see *Genetic Analysis* section). For individuals field identified as Appalachian cottontails, we radio-collared adult cottontails >700 g using MI-2 radio-collars (Holohil Systems Ltd., Carp, Ontario,

Canada). The radio-collar weighted ~27g, consisting of <4% of the collared cottontail's total body weight. Our methods for capture and tagging were approved by the Virginia Tech Institutional Animal Care and Use Committee (permit #16-049-FIW). We released all captures at their capture site.

Telemetry Surveys

We waited 48-72 hours after the initial capture of each radio-collared cottontail prior to tracking, allowing for individuals to adjust to the collar and resume normal movements (White and Garrott 1990). We tracked both diurnal and nocturnal movements of radio-collared cottontails to more accurately estimate home range and habitat use. We used simultaneous biangulation to obtain telemetry fixes on cottontails, while removing temporal bias (Schmutz and White 1990). This technique was appropriate for highly mobile small-bodied mammals that occupy relatively small homes ranges (<20 ha; Koprowski et al. 2008, Diggins and Ford 2017), such as Appalachian cottontails, which typically had home ranges <15 ha (Stevens and Barry 2002, Boyce and Barry 2007). Additionally, this technique reduced the potential impact of observer movement on activity of radio-collared cottontails since observers were stationary for the duration of the tracking period.

We placed telemetry stations >50 m apart and minimized bearings taken at $<90^{\circ}$ angles (White and Garrott 1990). We tracked cottontails during 4 hours sessions, where sessions were systematically blocked across a 24-hour time frame (i.e., 200-600, 600-1000, 1000-1400, etc.). We tracked individuals 1-3 times every 7-10 days and sessions were set a minimum of 12 hours apart, which allowed us to reduce travel to more remote sites. We rotated tracking sessions so each rabbit was tracked across the 24-hour period. We tracked individuals until their collars fell off, the individual died, or to the end of the study.

Data Analysis

Predictive Occupancy Map

Using live capture and scat-based occupancy data, we conducted species distribution modeling to determine which landscape factors Appalachian cottontail selected for across the study area. We used the program Maxent (version 3.4.1; Phillips et al. 2020), incorporating geospatial climatic (BioClim Version 2, Fick and Hijmans 2017; Appendix A) and habitat layers (SE-GAP), to conduct maximum entropy modeling of the geographic distribution of Appalachian cottontails in western North Carolina.

Only genetically-confirmed Appalachian cottontail points were used for this analysis. To adjust for spatial clustering due to focused sampling in certain areas (e.g. Black Balsam and Roan Highlands; Syfert et al. 2013), we randomly culled the 197 confirmed Appalachian cottontail records to 500 m minimum spacing in ArcGIS using the Create Random Points tool (ESRI 2019). This resulted in 46 input points for the model. We clipped BioClim and SE-GAP rasters to the same extent using the Extraction by Mask Layer tool in QGIS (QGIS 2019). The mask layer used was a boundary of North Carolina created by using a dissolve tool on a NC counties boundary shapefile downloaded from NC One Map (NCDOT 2020). We aligned our bioclimatic raster layers with the SE Gap raster (30 m pixels) using the "Clip" tool with a "Snap Raster Environment" in ArcGIS Pro. We then reprojected all rasters to WGS 84 CRS so the occurrence points would overlay using Maxent. The final pixel size was 0.00032, -0.00032 degrees. Our settings in Maxent included a 25% random test percentage with a maximum number of background points of 10,000; otherwise, all settings were the default options in this version of Maxent.

Home Range and Habitat Use Analysis

We entered locations of telemetry stations and biangulation bearings into the software program LOCATE II (Pacer Co., Truro, Nova Scotia, Canada) to obtain UTM coordinates of locations for radio-collared individuals. Using all locations for each cottontail, we estimated home ranges using convex polygon (MCP) and biased random bridge (BRB) estimators at the 50% (core habitat) and 95% isopleth in package *adehabitat* (Calenge 2006, 2020) in Program *R* version 3.1.2 (*R* Development Core Team 2020). We used MCP to compare home range estimates from our study with other studies on Appalachian and eastern cottontail, as this estimator is commonly used in older studies. We calculated home range using BRB, a method that used an advective-diffusive movement process to link sequential points to estimate local space use density, thereby incorporating abilities of animals to preferentially select for more attractive areas within home range size between the sexes and high- and low-elevation sites using Wilcoxon rank-sum tests in Program *R*.

We determined habitat use based on use vs. availability through a Euclidean distancebased analysis approach, which analyzes habitat use in a linear fashion, accounting for the use of ecotones and bias in radio-telemetry fixes (Conner et al. 2003). We evaluated habitat use with this method by comparing the distances of animal locations and random locations to the nearest edge of different habitat types (Conner and Plowman 2001). As this method was adaptable to multiple spatial scales, we assessed habitat selection at the 2nd order (home range selection within the landscape) and 3rd order (within home range selection) scale with the 95% BRB home range for each individual cottontail. At the 2nd order scale, we selected a 1000-m buffer around the home range of each radio-collared individual.

We generated random points equal to the number of telemetry fixes per cottontail on the 2nd order (i.e., within 1000-m buffer) and 3rd order scale (i.e., within 95% BRB home range) in ArcGIS 10.2 (Environmental Systems Research Institute, Inc., Redlands, CA). We grouped cottontails into two groups (high-elevation and low-elevation) for habitat selection analysis because vegetation communities are strongly correlated with elevation in the southern Appalachians. We reclassified habitat types using habitat shapefiles from Southeast Gap Analysis data (www.basic.ncsu.edu/segap/, verified October 2019) and aerial imagery (i.e., ArcMap imagery basemap) in ArcGIS using similar techniques to Diggins et al. (2017). We classified habitat for the Euclidean distance-based analysis depending on available habitat within the 1000m buffers and the home ranges of all cottontails in the high-elevation and low-elevation groups. For the 2nd order analysis, we classified high-elevation habitat as spruce-fir forests, northern hardwood, grassy balds, shrub balds, heath balds, and oak, whereas we classified lowelevation habitat as oak, conifer (i.e., white pine, hemlock), early successional, and heath bald. For the 3rd order analysis, we classified high-elevation habitat as spruce-fir, northern hardwood, grassy balds, shrub balds, and heath balds, whereas we classified low-elevation habitat as oak forests, conifer forests, and early successional.

We measured distances between random points and telemetry to each habitat type. We then created distance ratios of telemetry:random points using averaged distances for each individual cottontail to the closest representative habitat type for the 2nd and 3rd order scale. If habitat use of a particular habitat type was non-selective (i.e., occurred randomly), habitat ratios would equal 1.0. If habitat ratios are <1.0, the cottontail is using that habitat type more than expected given its availability on the landscape and the habitat was selectively used. However, if habitat ratios are >1.0, the cottontail was using that habitat type less than expected given its availability on the landscape and that habitat type was avoided. We followed the methodology outlined in Conner and Plowman (2001) for Euclidean distance-based analysis. First, we determined if habitat selection occurred between habitat types by running a multivariate analysis of variances (MANOVA) to determine if distance ratios were different from 1.0. If habitat selection occurred between habitat types, we tested to see if telemetry:random distance ratios for each habitat type differed from 1.0 using t-tests to determine cottontails' selection or avoidance of each habitat type based on the availability of that habitat type on the landscape at both spatial scales. Finally, we ranked the habitat preferences of all combinations of habitat type distance ratios at both spatial scales using a series of pairwise t-tests. We conducted all habitat selection analysis in Program R and considered statistical significance if $\alpha \ge 0.05$.

Genetic Analysis

Species Identification

Due to the cryptic nature of Appalachian and eastern cottontails, all scat and tissue samples were tested for positive identification as Appalachian cottontail prior to their use in habitat use modeling efforts. We extracted DNA from tissue using Qiagen DNEasy extraction kits. We extracted scat samples using a QIA amp DNA Stool Mini Kit (Qiagen #51504) following manufacturer instructions on all but centrifuging techniques, the time for which will be doubled to maximize supernatant yield. We initially conducted species identification using restriction enzyme-based methods adapted from those outlined in Litvaitis and Litvaitis (1996) and Kovach et al. (2003). We amplified extracted samples via polymerase chain reaction and ran them on an eGel to select for bands of approximately 600 base pairs, the length of the target region. Samples were digested using Bfa I, a restriction enzyme which produced two fragments for Appalachian cottontails and three fragments for eastern cottontails. These fragment patterns could be easily discerned via gel electrophoresis (Figure 3). However, after questionable preliminary results, we decided to sequence the target gene. Sequencing showed that the fragment approach of Litvaitis and Litvaitis (1996) did not identify all S. obscurus due to single nucleotide polymorphisms (SNPs) in the area of the gene targeted by the restriction enzymes. This is not surprising, as Litvaitis and Litvaitis (1996) designed their protocol for New England cottontails and not Appalachian cottontails. Thus, we decided to develop a quantitative PCR (qPCR) approach to species identification. Quantitative PCR is a much more reliable method for species identification than fragment analysis and has the advantage of less steps and thus less chance of contamination.

We designed primer probes from the Cytochrome b region of the mitochondrial genome using Geneious (V. 7.1.9). We designed primers and probes (Table 2) independently for Appalachian and eastern cottontails. Our general approach was to run each sample in triplicate with each set of probe/primers and to compare average CT values between the two sets. We tested this approach with 40 known (sequenced) samples to ensure that tissues and scat could be accurately and repeatedly identified and we did not find any inaccurate identifications. Both probe/primer sets were run for an initial 15 minute denaturing step at 95°C, followed by 50 cycles of a 94°C denaturing step for 1 minute and a 62°C annealing step. Data collection occurred during the annealing step. We recorded cycle threshold (CT) values for each sample (in triplicate).

Primer Name	Primer
Sf_cytb_probe	/56-FAM/CTGCCTTTA/ZEN/TATACACGTCGGCC/3IABkFQ/
So_cytb_probe	/56-FAM/CTTCTTCGC/ZEN/GTTCCATTTTATCTTACCA/3IABkFQ/
Sf_cytb_F	CGTTATCTTCACGCTAATGGA
Sf_cytb_R	CCTATGAATGCTGTAGCTATCAC
So_cytb_F	ACATCGGAACGACTTTAGTC
So_cytb_R	CCGGTTTCGTGAAGAAAAGT

Table 2. Probes and primers designed for *Sylvilagus floridanus* and *Syvilagus obscurus*. Primers are from the Cytochrome b region of the mitochondrial genome.

Population Genetics

For this study, we employed a relatively new technique referred to as RADcap (Hoffberg et al. 2016). RADcap combined the best features of two commonly used "next generation sequencing" (NGS) techniques: sequence capture (Okou et al. 2007, Gnirke et al. 2009) and restriction-site associated DNA sequencing (RADseq; Miller et al. 2007, Baird et al. 2008, Davey and Blaxter 2010, Davey et al. 2011, Peterson et al. 2012). The melding of these approaches provided an ideal combination of sufficient genetic data (hundreds to thousands of data points) with extensive geographic representation (i.e. hundreds to thousands of individuals).

We developed molecular "baits" by first sequencing 12 individuals using a RADseq approach. Individual extractions were normalized and prepared using a 3RAD library procedure (Adapterama III; Bayona-Vásquez et al. 2019: bioRxiv: 205799). The three enzymes used during the digestion step were BAMHI, MSPI, and ClaI. Each sample was then quadruple-indexed, limited-cycled in PCR, and cleaned using speed beads (Rohland and Reich 2012) following the 3RAD procedure. Finally, we pooled samples together, size selected for 500 bp on a Pippin Prep (Sage Science), and sequenced on an Illumina Next-Seq 500 V.2 150 bp SR flow cell (Illumina Inc.) at the NC State University Genomic Sciences Laboratory with 5 million reads per sample. The 3RAD sequence data was demultiplexed, quality assessed, clustered, consensus called, and assembled de novo, using ipyrad v0.7.28 (Eaton and Overcast 2016). The resultant 22,386 SNPs were then filtered in VCFtools v0.1.14 (Danecek et al. 2011).

Resultant SNPs met the following requirements: minimum and maximum number of alleles per site of 2, minimum mean depth of coverage of 5, minor allele frequency of 0.2 (to remove singletons), and present in at least 50% of samples. We removed indels. Using these resultant SNPs, we produced a second SNP dataset by excluding heterozygous sites. We then selected informative SNPs across both species and sent them to Arbor BioSciences (Ann Arbor, MI) to develop 2,500 molecular baits. We then ran all 55 tissues samples according to the methods outlined in Hoffberg et al. (2016).

Population Genetic Structuring

We used two Bayesian methods to investigate the genetic structuring of populations. The first was implemented in TESS version 2.3 (Chen et al. 2007). TESS used hidden Markov random fields to model spatial dependence among individuals (Chen et al. 2007). This approach had the advantage that it incorporates the a priori assumption that individuals near one another are more likely to have similar allele frequencies than individuals from widely separated localities. We ran TESS for 100,000 simulations with a burn-in of 20,000. To estimate K (where K equals the number of populations), we ran 100 replicates each for K values ranging from 3 to 9. For each K, we averaged the 10 best deviance-information-criterion values and plotted them. Once we established the K value, the 10 runs with the lowest deviance-information-criterion values for that K were exported to CLUMPP version 1.1.2 (Jakobsson and Rosenberg 2007). We used the FullSearch algorithm in CLUMPP to match cluster membership over multiple runs. We repeated the above procedure using both the admixture and the no-admixture models implemented in TESS version 2.3 (Chen et al. 2007). Because the models did not differ significantly, we used the results from the no-admixture model, as recommended by the authors. We also studied the spatial genetic patterns by means of STRUCTURE 2.3.4 (Pritchard et al. 2000). STRUCTURE uses a Bayesian framework to assign individuals to populations by maximizing HWE within populations, and is one of the most commonly used structuring programs. The DK method of Evanno et al. (2005) was used to assess the best value of K. For

each run of STRUCTURE, the program was run for 1,000,000 MCMC cycles, with a burn-in of 100,000 and default settings. We also assessed the number of populations using a K-means clustering approach (Meirmans 2012) in Genodive (Meirmans and Van Tienderen 2004) using a Bayesian Information Criterion.

Genetic Diversity, Gene Flow, and Hybrid Detection

Once populations were defined, we uploaded data into GenoDive v2.0b25 (Miermans and Tienderen 2004). Measurements of genetic diversity and differentiation were calculated at the individual, population, and species level. These include F'_{sT} and G'_{sT} for population differentiation, G_{IS} for a measure of inbreeding, and an Analysis of Molecular Variance (AMOVA). We identified potential hybrids using population assignment likelihood ratios in GenoDive v2.0b25 (Miermans and Tienderen 2004) and by Structure 2.3.4 (Pritchard et al. 2000).

RESULTS

Objective 1

Predictive Occupancy Model

After randomly culling our data set to reduce spatial bias, we used the resulting 46 geneticallyconfirmed Appalachian cottontail records along with climatic and land cover variables to predict this species' occupancy in the state of North Carolina (Figure 3). The resulting model demonstrated strong predictive performance, as indicated by AUC values of 0.985 and 0.948 for training and testing data, respectively (Figure 4).

Figure 3. Predictive occupancy map for Appalachian cottontail (*Sylvilagus obscurus*) in North Carolina. Models were run for the entire state; however, only the region with predicted occupancy is shown.

Figure 4. Receiver operating characteristic (ROC) curve for the *S. obscurus* Maxent model, which utilized 46 locations and a 25% random test percentage (i.e. n=35 for training data and n=11 for test data). AUC values above 0.9 are considered representative of strong model prediction performance.

Variables contributing most to model fit, as indicated by permutation importance in Maxent, were bio_2: mean diurnal temperature range, bio_8: mean temperature of wettest quarter, and bio_15: precipitation seasonality (Table 3). Plots of predicted occupancy's dependence on each of these variables as well as all other variables tested can be seen in Appendix B. Jacknife tests of variable importance indicated several additional variables as influential in predicting Appalachian cottontail occupancy, including bio_5: maximum temperature of warmest month, bio_10: mean temperature of warmest quarter, bio_1: mean annual temperature, and land cover 3).

To disentangle the complex predictive power of co-varying climate variables, we produced a Pearson's correlation coefficient matrix using the Band Collection Statistics tool in ArcGIS (ESRI 2019; Appendix C). Correlated variables of interest included a suite of temperature and seasonality variables, demonstrating statewide trends in temperature and precipitation seasonality: bio_1 (mean annual temperature) was correlated with bio_5 (maximum temperature of warmest month; r=0.90), bio_8 (mean temperature of wettest quarter; 0.71), bio_10 (mean temperature of warmest quarter; r=0.97), and bio_15 (precipitation seasonality; r=0.72). Bio_5 was also correlated with bio_10 (mean temperature of warmest quarter; r=0.96). Bio_8 and bio_10 were also correlated (r=0.75).

Table 3. Influential variables in species distribution modeling for Appalachian cottontail (*Sylvilagus obscurus*). For specific information on the nature of the relationship between each variable and Appalachian cottontail predicted occupancy, please reference Appendix B. Permutation importance represents the degree to which the final Maxent model depended on a given variable, training gain represents the amount of explanatory gain acquired in a univariate model generated from the training data (the 75% of points selected randomly by Maxent), test gain represents similar gain for a model using the 25% test data, and AUC (area under curve) values are measures of fit for univariate models (Phillips 2017). Maximum value for a given metric is bolded.

Variable Code	Variable Name/ Description	Relationship to S. <i>obscurus</i> occupancy	Permutation Importance (%)	Training Gain	Test Gain	AUC
bio_15	Precipitation Seasonality	Peak occupancy at low seasonality (areas with consistent precipitation throughout the year)	23.2	1.35	1.5	0.92
bio_8	Mean Temperature of Wettest Quarter	Peak occupancy at low temperatures (2-12°C)	26.2	1.79	1.3	0.92
bio_2	Mean Diurnal Range (Mean of monthly (max temp - min temp))	Peak occupancy at mid- range: 6-9°C	29	2.0	0.8	0.83
bio_5	Max Temperature of Warmest Month	Peak occupancy in mid/upper range: ~20°C	0	2.86	1.94	0.95
bio_10	Mean Temperature of Warmest Quarter	Peak occupancy in mid- range: ~15°C	0	2.76	1.92	0.95
bio_1	Mean Annual Temperature	Peak occupancy in mid- range, ~6-8°C	0	2.67	1.90	0.94
SE-GAP	Land cover	 Most predictive habitat types (all 100%): Central and Southern Appalachian Northern Hardwood Central and Southern Appalachian Spruce- fir Forest Southern Appalachian Grass and Shrub Bald 	0	1.9	2.93	0.92

Home Range and Habitat Use

Over the course of 5,488 trap nights, we captured 52 cottontails (40 Appalachian cottontails, 12 eastern cottontails; Appendix D) and collared 26 of those individuals (14 males, 12 females). Additional non-target captures include 20 Virginia opossums (*Didelphis virginiana*), 9 raccoons (*Procyon lotor*), 9 red squirrels (*Tamiasciurus hudsonicus*), 4 eastern gray squirrels (*Sciurus carolinensis*), 1 Carolina northern flying squirrel (*Glaucomys sabrinus coloratus*), 1 mouse (*Peromyscus* spp.), and 1 common rat (*Rattus rattus*; Appendix D). Postgenetic analysis showed 3 of our collared rabbits were eastern cottontails and 2 had inconclusive genetic confirmation; therefore, we removed these individuals from further analysis. Of the 22 genetically confirmed Appalachian cottontails we tracked, 20 had >30 telemetry locations (12 males, 8 females; Appendix E). We gathered 1,762 telemetry points (average of 88±10 points/cottontail; range: 34-200) on these 20 individuals. We tracked individuals for an average of 13±1.5 weeks (range: 3-24). Inter-locations of radio-collared cottontails were non-normally distributed with a strong positive skew and individuals moved an average of 31.5 m ±3.4 SE (range: 4.9-87.9) between locations.

Home Range

For Appalachian cottontails, average MCP home range estimates were non-normally distributed and had a strong positive skew at both the 50% and 95% levels. Average MCP at the 50% and 95% home range was 0.80 ha \pm 0.13 SE (range: 0.21-2.16) and 3.4 \pm 0.75 (0.55-13.78), respectively (Appendix E). We did not find any differences in MCP home range size between males and females at the 50% (*W*=44.5, *p*=0.82) or 95% level (*W*=49, *p*=0.97). There was no difference in MCP home range size between high- and low-elevation cottontails at the 50% (*W*=46, *p*=0.91) or 95% level (*W*=43, *p*=073).

The average BRB diffusion parameter was 67.9 m²min² + 17.6 SE (range: 6.0-342.9). Home range estimates at both the 50% and 95% levels were non-normally distributed and displayed a strong positive skew. Average BRB at the 50% and 95% home range was 1.08 ha \pm 0.18 SE (range: 0.11-2.58) and 5.72 \pm 1.15 (0.83-19.44), respectively (Appendix E). There were no differences in BRB home range sizes between males and females at the 50% (*W*=46, *p*=0.91) or 95% level (*W*=33, *p*=0.27). Additionally, we found no differences in BRB home range sizes between high- and low-elevation sites at the 50% (*W*=52, *p*=0.79) or 95% (*W*=45, *p*=0.85). We showed figures of all BRB home range estimates in Appendix F.

Habitat Use

We tracked 13 Appalachian cottontails at high-elevation sites and 7 at low-elevation sites. At the high-elevation sites, the average distance between Appalachian cottontail telemetry points and the nearest spruce-fir was 90.1 m \pm 35.8 SE, northern hardwood was 220.4 \pm 64.5, grassy bald was 388.7 \pm 136.8, shrub bald was 144.3 \pm 111.6, heath bald was 151.3 \pm 82.2, early successional was 977.2 \pm 139.8, and oak was 1342.4 \pm 79.4. On the 2nd order scale, the average distance between random points and the nearest spruce-fir was 86.1 m \pm 26.2 SE, northern hardwood was 130.7 \pm 28.9, grassy bald was 437.1 \pm 84.94, shrub bald 280.4 \pm 45.9, heath bald 317.2 \pm 76.3, early successional 917.0 \pm 126.6, and oak habitats 1165.7 \pm 82.3. On the 3rd order scale, the average distance between random points and the nearest spruce-fir was 129.9 m \pm 46.5 SE, northern hardwood was 240.7 \pm 72.2, grassy bald was 309.0 \pm 104.1, shrub bald was 78.2 \pm 39.9, and heath bald was 204.4 \pm 86.9.

At low-elevation sites, the average distance between Appalachian cottontail telemetry points and the nearest oak was $61.3 \text{ m} \pm 16.1 \text{ SE}$, pine/hemlock was 15.6 ± 9.8 , early successional was 36.4 ± 15.9 , and heath bald habitats was 1160.5 ± 95.9 . On the 2nd order scale, the average distance between random points and the nearest oak was 9.4 ± 1.5 , pine/hemlock was 294.3 ±32.4 , early successional was 267.2 ± 11.5 , and heath balds was 1240.2 ± 103.9 . On the 3rd order scale, the average distance between random points and the nearest oak was 58.2 ± 14.7 , pine/hemlock was 22.9 ± 11.7 , and early successional was 41.7 ± 14.7 .

We found habitat selection was occurring on the 2nd and 3rd order scale at both highelevation ($F_{7.6}$ =248.37, P=0.000; $F_{5.8}$ =34, P=0.000, respectively) and low-elevation sites ($F_{4.3}$ =4200, P=0.000; F_{43} =95.3, P=0.000, respectively). In high-elevation sites, cottontails selected for heath balds on the 2nd order scale more than expected given that habitat's availability on the landscape, and they avoided oak forests, using that habitat less than expected given oak availability on the landscape (Table 4). Cottontails did not select or avoid spruce-fir, northern hardwood, grassy bald, shrub bald, or early successional habitat and used these habitats proportionally to their availability on the landscape (Table 4). On the 3rd order scale, cottontails selected for heath balds more than expected, whereas other habitat types were neither avoided nor selected for given their availability on the landscape (Table 4). In low-elevation sites, cottontails at the 2nd scale selected for pine/hemlock, early successional, and heath balds, whereas they avoided oak forest more than expected based on their availability (Table 4). At the 3rd scale, cottontails selected for pine/hemlock more than expected and they did not select for or avoid early successional or oak habitat within their home ranges (Table 4). Ranked habitats showed preferential selection of certain habitat types over others in both high- and low-elevation habitats (Table 5). At high-elevation sites on the 2^{nd} order scale, we found cottontails significantly closer to shrub bald < heath bald < spruce-fir < grassy bald < oak < northern hardwood < early successional. At low-elevation sites on the 2nd order scale, we found cottontails significantly closer to pine/hemlock < early successional < heath bald <oak. We found cottontails equally close to all habitat types on the 3rd order scale for both high and low elevation sites.

	Habitat	2 nd order scale	3 rd order scale
High-elevation	Spruce-fir	-0.96 (0.357)	0.24 (0.817)
	Northern hardwood	1.92 (0.079)	-0.59 (0.566)
	Grassy bald	-0.50 (0.627)	0.98 (0.348)
	Shrub bald	-1.99 (0.070)	0.80 (0.440)
	Heath bald	-5.8 (0.000)	-2.4 (0.036)
	Early successional	0.94 (0.366)	
	Oak	3.1 (0.009)	
Low-elevation	Oak	2.7 (0.037)	0.38 (0.72)
	Pine/hemlock	-10.7 (0.000)	-2.5 (0.047)
	Early successional	-11.6 (0.000)	-1.25 (0.259)
	Heath Bald	-4.7 (0.003)	

Table 4. T-tests of Appalachian cottontail (*Sylvilagus obscurus*) distance ratios for telemetry:random points indicating use versus availability on the landscape (2nd order scale) and home range (3rd order scale). Results are t-statistics (p-values).

Table 5. Ranking matrix of Appalachian cottontails (*Sylvilagus obscurus*) habitat selection in western North Carolina during 2018-2020. Results are t-statistics (P-values) of pairwise comparisons of habitat type telemetry:random distance ratios. Values shown indicate t-statistic (p-value). Negative t-statistics indicate the column habitat was selected over the row habitat, whereas positive t-statistics indicate the row habitat was selected over the column habitat.

	Spruce-fir Northern hardwood		Grassy bald Shrub bald		ald	Heath bald	Early successional		Oak
High-elevation sites									
2 nd order scale									
Spruce-fir		1.92 (0.079)	0.19 (0.849)	-0.85 (0.4	408)	-1.46 (0.171)	1.27	7 (0.227)	1.47 (0.169)
Northern hardwood	-1.92 (0.079)	79)1.58 (0.140) -3.03 (0.011) -		-3.38 (0.005)	0.16 (0.878)		-0.99 (0.339)		
Grassy bald	-0.19 (0.849)	1.58 (0.140)		-4.06 (0.0	002)	-1.36 (0.198) 1.		3 (0.321)	1.17 (0.266)
Shrub bald	0.85 (0.408)	3.03 (0.011)	4.06 (0.002)			0.08 (0.936)	1.74	4 (0.108)	2.71 (0.019)
Heath bald	1.46 (0.171)	.46 (0.171) 3.38 (0.005)		-0.08 (0.9	936)		1.95	5 (0.075)	5.59 (0.000)
Early successional	-1.27 (0.227)	-0.16 (0.878)	-1.03 (0.321)	-1.74 (0.1	108)	-1.95 (0.075)			-0.55 (0.590)
Oak	-1.47 (0.169)) 0.99 (0.339) -1.17 (0.266) -2.7		-2.71 (0.0	019)	-5.59 (0.000)	0.55	5 (0.590)	
3 rd order scale									
Spruce-fir		-0.41 (0.691)	0.95 (0.363)	0.363) 0.76 (0.461) -1.18 (0.259		-1.18 (0.259)			
Northern hardwood	0.41 (0.691)		0.99 (0.338)	.99 (0.338) 0.83 (0.42		-1.41 (0.185)			
Grassy bald	-0.95 (0.363)	-0.99 (0.338)		-1.63 (0.12		-1.07 (0.304)			
Shrub bald	-0.76 (0.461)	-0.83 (0.425)	1.63 (0.128)	.63 (0.128)		-0.92 (0.375)			
Heath bald	1.18 (0.259)	1.41 (0.185)	1.07 (0.304)	0.92 (0.375)					
	Oa	ık	Pine/heml	ock Ea		arly successiona	1	He	ath bald
Low-elevation site									
2 nd order scale									
Oak		-	-3.01 (0.0	24)		-2.99 (0.024)		-2.6	58 (0.03)
Pine/hemlock	3.01 (0).024)				3.04 (0.022)		9.34	4 (0.000)
Early successional	2.99 (0).024)	-3.04 (0.0	22)				10.0	4 (0.000)
Heath bald	2.68 (0.03)	-9.34 (0.0	00)		-10.04 (0.000)			
3 rd order scale									
Oak		-	-1.53 (0.1	76)		-1.02 (0.346)			
Pine/hemlock	1.53 (0).176)				0.61 (0.566)			
Early successional	1.02 (0).346)	-0.61 (0.5	66)					

Species identification

We identified 272 unique samples from 270 unique localities (Fig. 5). In total, we tested 207 scat samples and 65 tissue samples (Appendix G). Overall, the qPCR approach worked very well, with only 3 tissue samples coming back as ambiguous. However, it was later revealed by sequencing that those 3 samples were likely hybrids (see below). The qPCR approach was also reliable and effective for the scat samples, with 207 samples positively identified and 16 samples undetermined, likely because of degraded DNA.

Londo Chinch Riv Somerset orbin 2 Daniel Boo Nationa Forest Bristol Cherokee National Kingsport Johnson City Morristown Lenoir Knoxville Morganton State Brookford 13 Ashe llive M Athens 0 100 Shelby Nantahala Sroad Riv Ch National Forest eland Spartanburg attahoochee National Green LEGEND N qPCR ID NC State Line 0 S. floridanus GSMNP Anderson S. obscurus Hartwei NC State Lands 0 10 20 40 60 80 0 Undetermined Miles USA Federal Lands Lake Greenwood

Figure 5. Sampling localities and qPCR identification for 272 Sylvilagus sp. samples.

Objective 2

Overall genetic results

Sequencing of the molecular baits resulted in 648 informative SNPs across all samples. While there were many more SNPs available that had some missing data or that were not as informative across all populations, we felt that 648 SNPs were more than adequate to address our objectives.

Population genetic structure

All approaches used to identify population genetic structure showed strong support for 4 populations when all samples from both species were included. Not surprisingly, these approaches identified eastern cottontail as one of the groupings and 3 populations of Appalachain cottontail (Fig 6). The 3 populations of *S. obscurus* were 1.) a Great Smoky National Park (GSMNP) grouping that included samples from Forney Ridge and Purchase Knob, 2.) a Pisgah grouping that included the Cradle of Forestry, Panthertown, Black Balsam, and Graveyard Fields, and 3.) a Roan mountain grouping that included all samples from the Roan area. When Appalachian cottontail samples were removed, additional eastern cottontail structure was identified for comparative purposes. These groupings were 1.) Mistletoe Meadows (near Stone Mountain State Park), 2.) a western group that was samples near GSMNP, 3.) a Black Balsam area grouping and 4.) a Roan Mountain area grouping.

Genetic diversity, gene flow, and hybrid detection

Population genetic analyses revealed a high amount of differentiation between genetic groupings (Table 6). Conversely, genetic groupings for eastern cottontails showed virtually no differentiation. However, Appalachian cottontail populations did not have excessively high F_{IS} values (Pisgah- 0.064, GSMNP-0.033, Roan- 0.032). An Analysis of Molecular VAriation (AMOVA) of Appalachian cottontail samples (Table 8) largely corroborated the F'sT results. Likelihood ratio tests identified 3 probable hybrids between Appalachian cottontails and eastern cottontails, one from Mistletoe Meadows (unknown morphology), one from Roan (eastern morphology), and one from The Blue Ridge Parkway near Black Balsam (Appalachian morphology). All hybrids appear to be crosses between female eastern cottontails and Appalachian cottontail males.

Table 6. F'_{ST} values between Appalachian cottontail genetic groupings and all eastern cottontail samples grouped.

	Pisgah	GSMNP	Roan	eastern cottontail
Pisgah	0	0.233	0.175	0.639
GSMNP	0.233	0	0.395	0.577
Roan	0.175	0.395	0	0.668
Eastern Cottontail	0.639	0.577	0.668	0

Tuble 7.1 ST values between castern contontain concile croupings	Table 7.	F'st values	between eastern	cottontail	genetic	groupings.
--	----------	-------------	-----------------	------------	---------	------------

	Mistletoe	Western	Black Balsam	Roan
	Meadows			
Mistletoe Meadows	0	0.029	0.008	0.032
Western	0.029	0	-0.075	-0.092
Black Balsam	0.008	-0.075	0	-0.078
Roan	0.032	-0.092	-0.078	0

Figure 6. Distribution of Appalachian cottontails (*Sylvilagus obscurus*) genetic groupings and eastern cottontail (*S. floridanus*) samples from genetic ear punch samples.

Table 8. Analysis of Molecular Variation (AMOVA) for Appalachian cottontail genetic groupings.

Source of	%var	F-	F-	Std.Dev	c.i.2.5	c.i.97.5	Р-	F'-value
Variation		stat	value	•	%	%	value	
Within	0.748	FIT	0.252	0.065	0.127	0.377		
Individual								
Among	0.04	F _{IS}	0.051	0.041	-0.029	0.132		
Individual								
Among	0.212	F _{ST}	0.212	0.061	0.098	0.332	0.001	0.223
Population								

DISCUSSION

Habitat Selection and Home Range

We found Appalachian cottontails preferentially selected for habitat within the surrounding landscape and within their home range, similar to eastern cottontails in the Southeast (Bond et al. 2002). At high-elevation sites, Appalachian cottontails used heath balds more than expected given their availability on the landscape on the 2nd and 3rd order scales. This finding was consistent with previous work in West Virginia and Maryland that observed Appalachian cottontails were associated with ericaceous cover, such as rhododendron, mountain laurel, or blueberries (Chapman and Morgan 1973, Chapman et al. 1992, Boyce and Barry 2007). While dominant vegetation in heath balds is typically not consumed in Appalachian cottontail diets (Hartman and Barry 2010), they provide cover for cottontails, which may help prevent predation (Boyce and Barry 2007, Cheeseman et al. 2019). Stevens and Barry (2002) found Appalachian cottontails in West Virginia avoided areas >10 m away from cover, indicating that proximity to cover is an important habitat feature for this species. Additionally, these habitat types possibly provided thermal cover during winter, since freezing temperatures were a contributing factor to higher mortality rates of cottontails during this time of year (Bond et al. 2002, Boyce and Barry 2007, Hartman and Barry 2010).

At low-elevation sites, pine/hemlock forests were an important habitat type Appalachian cottontails preferentially selected for at both spatial scales. However, telemetry work at lower elevations has not previously occurred for this species, so habitat associations at low elevation sites had been derived from live-trapping and hunting records. A previous study observed Appalachian cottontails in a pine-dominate forest in South Carolina (Russell et al. 1999). Radiocollared cottontails avoided oak forests on the landscape scale, but did not select for or avoid oak forests within their home ranges. Appalachian cottontails were previously observed in hardwood stands void of conifers (Blymyer 1976, Sole 1999). In Kentucky, Appalachian cottontails were collected with young hardwood stands that occasionally had mountain laurel, blueberries, or greenbrier (Smilax spp.) in the understory (Sole 1999). Blymer (1976) found Appalachian cottontails in a 6-7 year old clearcut with hardwood regeneration. Variation in the time of year these studies occurred and methods to determine habitat associations (i.e., live-trapping vs. telemetry) may be why we did not see cottontails selecting for hardwood dominant stands. Additionally, rhododendron and mountain laurel were common in the understory at both low elevation sites, which may provide important understory cover in forest types dominated by conifers or hardwoods.

The majority of our tracking took place during the cold season, when deciduous leaves were off. Therefore, the habitats Appalachian cottontails selected for potentially provided better thermal cover and concealment from predators during this time of year. Spruce-fir, pine/hemlock, and heath bald habitats provided cover throughout the year. While our study found these cover types to be preferred to hardwood dominated habitats, the time of year we tracked our cottontails may have resulted in higher selection of these habitat types. Since the highest capture rates of Appalachian cottontails occurred in the fall, tracking was limited during the spring and summer. Additionally, most cottontails radio-collared in the fall were initially tracked during leaf-on prior to leaf-off in October, however, this composed of only a few weeks of tracking and did not allow for a large enough sample size to compare habitat selection between seasons. Therefore, it is possible that these cover types may have more use during the colder months and this should be further explored. The leaf-on season, we did not have a large

enough sample size to determine if habitat use or home range size varied between these times of year.

We found home range estimates of Appalachian cottontails in the southern Appalachians to be similar to this species in the central Appalachians. In Savage River State Forest in western Maryland, Stevens and Barry (2002) found 95% MCP home ranges of Appalachian cottontails ranged from 1.4-8.3 ha. In the Allegheny Mountains of West Virginia, 95% adaptive kernel home ranges of cottontails ranged from 0.9-9.0 ha (Boyce and Barry 2007). Similar to Stevens and Barry (2002), we did not find any differences between the home range size of males and females, but their study had a small sample size of 8 rabbits. Most studies on cottontails in the eastern United States find significant differences in home range size between the sexes depending on the time of year (Althoff and Storm 1989, Bond et al. 2001, Boyce and Berry 2007, Cheeseman et al. 2019). Male cottontails tend to have larger home ranges during the leafon season, potentially due to the availability of more cover and food resources (Boyce and Berry 2007). Additionally, because cottontails have polygamous mating systems, males may increase home range size during leaf-on season to increase fitness by attempting to find more mates (Bond et al. 2001, Cheeseman et al. 2019). Females typically maintain similar sized home ranges between the leaf-on and leaf-off seasons (Boyce and Barry 2007) because they have parental duties that may require them to remain closer to the den with their young (Bond et al. 2001). Our low sample sizes between leaf-on and leaf-off seasons did not allow us to determine if Appalachian cottontails in western North Carolina exhibited these trends in home range size between seasons, requiring further investigation.

Scat Surveys and Predictive Occupancy Modeling

Spatial clustering of our samples necessitated the culling of most points to reduce bias in our model (Syfert et al. 2013). Despite the resulting relatively small sample size and the challenges of covarying climatic factors, we achieved a model with good predictive capacity (AUCs >0.94) and clear trends for Appalachian cottontail preferences in North Carolina.

Our species distribution model, using Appalachian cottontail detections from scat surveys, live captures, and opportunistic scat collection, indicated that this species associates with areas that exhibit moderate to cool temperatures and consistent year-round precipitation. They also favored bald, spruce-fir, and northern hardwood habitat types. This species has often been described as restricted to high-elevation habitats (Webster et al. 1985, Chapman et al. 1992, Chapman 2007). While our research supports the claim that this species inhabits these areas, our documentation of Appalachian cottontails as low as 383 m and 590 m, in South Mountains State Park and Sandy Mush Gameland, respectively, also suggests this species can inhabit lower elevation sites, as has been documented in other southeastern states (Campbell 2010).

Our distribution modeling results cannot parse apart direct and indirect climate relationships. One possible direct climatic driver of the species' distribution is cold stress, which has been documented for other lagomorph species (Katzner et al. 1997, Beever et al. 2010). In our live trapping efforts, we documented higher mortality rates in freezing temperatures, consistent with the species' selection of moderate to cool, but not the coldest, regions of the state. Indirect drivers of these climatic relationships are likely to include the vegetation associations of this species, including cool, wet forest and bald habitats.

Population Genetics

Results from genomic sequencing identified well differentiated populations of Appalachian cottontails across the landscape. Though our sampling was somewhat limited, it is clear that there are genetically isolated populations associated with high mountain peaks in Western North Carolina (WNC). Namely, along the Tennessee border in the Great Smoky Mountains National Park, in the Pisgah/Black Balsams region, and in the Roan Highlands. This is supported by Bayesian population structuring, K-means clustering, an Analysis of Molecular Variance (AMOVA), and F statistics. The AMOVA indicated that roughly 21% of molecular variance can be explained by this isolated population structure. This is a fairly high amount of differentiation for a relatively vagile mammal. The New England cottontail, the sister species of the Appalachian, also displays a high amount of population differentiation, though the Appalachian cottontail populations sampled here appear to be much more isolated (Fenderson et al. 2011).

The relatively high amount of genetic differentiation is also supported strongly by F statistics (Table 6). In fact, WNC populations of Appalachian cottontails have much higher F_{ST} values than New England cottontail populations found at similar distances apart (Fenderson et al. 2011), and are orders of magnitude higher than eastern cottontails on the same landscape (Table 7). There are two possible explanations for the differences between Appalachian and New England cottontails, the first being that Appalachian cottontails have been isolated for much longer in their habitat patches than New England cottontails. The second is that there is much less current gene flow between patches. In all likelihood, the observed pattern is a result from a combination of these factors. A more detailed genetic sampling scheme and GIS analysis would be necessary to uncover the factors that drive the pattern.

Despite the high amount of genetic differentiation found between Appalachian cottontail populations, there does not seem to be evidence of genetic issues arising from isolation. All Appalachian cottontail genetic groupings had a relatively low inbreeding coefficient (F_{IS} value), indicative of fairly large and randomly breeding populations. Thus, even though populations appear to be highly fragmented with low gene flow, at this time, differentiation is likely due to genetic drift rather than inbreeding.

An alternative explanation for low inbreeding levels may come from our discovery of hybridization events between Appalachian and eastern cottontails. If there is a high amount of hybridization occurring, then heterozygosity levels could appear higher than they are in natural Appalachian cottontail populations. This is of course a threat to the genetic integrity of the species and needs to be investigated further. Of interest, Chapman and Morgan (1973) mentioned potential hybrids, so this is unlikely to be a new phenomenon.

Future Research Needs

While this study increased understanding of distribution of Appalachian cottontails in western North Carolina, there is a need to understand fine scale distribution of eastern cottontails in the Appalachian Mountains and highlight which areas the two species co-exist. There is also a larger need to understand what factors influence fine scale distribution between eastern and Appalachian cottontails and if hybridization events are linked to those factors or are more random in nature.

As mentioned earlier, the threat of hybrid events for Appalachian cottontails is troubling. As we have seen for many imperiled species, such as red wolves and California tiger salamanders, hybridization can cause rapid declines. There are two main mechanisms for how hybridization can affect rare species (Todesco et al. 2016). The first being outbreeding depression, which causes lowered fitness levels and therefore wasted reproduction effort. This is often referred to as demographic swamping (Wolf et al. 2001). The other potential outcome is referred to as genetic swamping, or the replacement by one lineage (almost always the less common lineage) by hybrids. Genetic swamping has been found to be more common (Todesco et al. 2016) and is likely the greater threat for Appalachian cottontails. Thus, there is a need to study Appalachian populations in greater detail rather than the broad approach we took in this study. A detailed population genetic study would also help to better understand the population genetic health of each population and identify areas where habitat restoration is needed to expand population sizes and/or gene flow.

One factor that is likely to play a large role in influencing hybridization is the configuration of habitat. This includes fragmentation by roads and human development. Understanding the effects of habitat configuration will also be important in identifying dispersal corridors, especially since cottontails are known to use habitat along roads to disperse (Litvaitis et al. 2003). This may help inform models of species co-occurrence in the region. Likewise, we do not understand eastern cottontail habitat selection and how sympatric eastern and Appalachian cottontails compete for space. Related, a diet study between the two species would be especially helpful in determining management recommendations.

There is also a need to understand the influence that predators have on Appalachian cottontail populations. Recent decades have seen an increasing number of mesopredators, including increasing populations of bobcats (Roberts and Crimmins 2010) and the expanded range of coyotes to the eastern U.S. (Hill et al. 1987, DeBow et al. 1998, Kays et al. 2008). Certainly, a higher number of predators on the landscape has a negative influence on any Sylvilagus species present. One approach could be to conduct a mortality study and determine how cover availability and seasonal movements of Appalachian cottontails influence population growth rates.

Finally, there is a need for Appalachian cottontail surveys and studies in other areas of WNC that weren't surveyed for this study. Our model predicted the species in several areas of interest, including parts of the Nantahala National Forest in Clay, Graham, Jackson, Macon, and Swain Counties and sites near Boone, including Elk Knob (Watauga County) and Three Top Mountain (Ashe County).

Conclusions and Management implications

Very little is known about the Appalachian cottontail range wide, much less in Western North Carolina. This study has provided a strong foundation of important information for the management of the species. At the broad level, we now have a much better understanding of the distribution and potential distribution of the species throughout Western North Carolina. We also have a better idea of how genetic diversity is distributed and fragmented across that distribution. At the local level, we now have an improved understanding of the climactic variables that influence presence/absence, habitat use, home range size, and genetic health of populations, and we have uncovered evidence for hybridization between Appalachian and eastern cottontails. However, there is clearly a lot left to learn about this elusive species and we highly recommend continued research to improve our understanding of it.

We suggest that the following research programs, listed in order of importance

1. Further investigation into the levels and threats of hybridization with Eastern cottontails.

- 2. Research into how habitat configuration influences Appalachian cottontails.
- 3. Fine scale population genetics and genetic health of the known populations.
- 4. Direct competition studies between Eastern and Appalachian cottontails, including a diet study and habitat selection.
- 5. Ground truthing and species distribution model validation. That is, searching for new populations.
- 6. A study on the effects of meso-predator abundance and Appalachian cottontail abundance/survival.

Another needed future research program that we do not know how to rank yet is on the threat, effects, and spread of RHDV2 in Appalachian cottontail populations. Given the seemingly small size of Appalachian cottontail populations, a disease such as RHDV2 could be devastating. It could also be another threat that is exacerbated by dense populations of Eastern cottontails. If it is found that RHDV2 is prevalent in the areas where Appalachian cottontails are found, then this research need would certainly be among the top needs.

Our data has revealed is that at higher elevations, heath balds play a disproportionately important role for the species and should be maintained. It is also likely that the continued restoration of high elevation red spruce would have an overall positive effect on the species. These two actions together represent the most important and direct management implications for the species. We recommend that the NCWRC work together with the USFS to develop a management plan for heath balds and red spruce that would benefit the Appalachian cottontail in areas where we found good populations through trapping, scat surveys, and genetic analysis. We also recommend a more concerted effort to survey for Appalachian cottontails in unknown areas and at potential edges of the known populations to determine species range limits.

DELIVERABLES

Conferences

Presented

C.A. Diggins, L.P. Erb, and J.J. Apodaca. Habitat use and home range of Appalachian cottontails in western North Carolina. Oral presentation. 30th Annual Colloquium on the Conservation of Mammals in the Southeastern U.S. Asheville, NC. February 14, 2020.

Accepted abstracts

C.A. Diggins, L.P. Erb, and J.J. Apodaca. Habitat selection and home range of Appalachian cottontails in the southern Appalachian Mountains. Oral presentation in the Endangered Species Conservation and Management Section to be presented at 8:40 pm on Wednesday, September 30, 2020. 27th Annual Conference of the Wildlife Society, Louisville, KY.

Publications

Diggins, C.A., L.P. Erb, and J.J. Apodaca. *In Preparation*. Multi-scale habitat selection and home range of a high-elevation lagomorph in the southern Appalachian Mountains. Journal of Wildlife Management.

L.P. Erb, J. Shields, C.A. Diggins, M. Olszack, and J.J. Apodaca. *In Preparation*. Refining species distribution models for a rare lagomorph using land cover and bioclimatic layers. Journal of Mammalogy.

J.J. Apodaca, M. Olszack, L.P. Erb, and C.A. Diggins. *In Preparation*. A new method for identifying Appalachian cottontails from congeners. Southeastern Naturalist J.J. Apodaca, M. Olszack, L.P. Erb, and C.A. Diggins. *In Preparathion*. RADSeq reveals a complex genetic structure and hybridization in the Appalachian cottontail. Conservation Genetics

Workshops

• A planned workshop on the results of this study for partners scheduled for June 2020. Originally scheduled for March 17th, 2020 but rescheduled due to the Covid-19 pandemic.

Literature Cited

- Althoff, D.P., and G.L. Storm. 1989. Daytime spatial characteristics of cottontail rabbits in central Pennsylvania. Journal of Mammalogy 70(4):820-824.
- Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, et al. 2008 Rapid SNP Discovery and Genetic Mapping Using Sequenced RAD Markers. PLoS ONE 3(10): e3376. doi:10.1371/journal.pone.0003376
- Barry, R. 2018. Sylvilagus obscurus. Pp. 149-152 in Lagomorphs: Pikas, rabbits, and hares of the world. (Smith, A.T., C.J. Johnson, P.C. Alves, and K. Hackländer, eds.), John Hopkins University Press, Baltimore, MD.
- Barry, R., and J. Lazell. 2008. Sylvilagus obscurus. The IUCN Red List of Threatened Species 2008: Accessed on 29 November 2015 from e.T41301A10434606.http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T41301A1043460 6.en.
- Bayona-Vásquez NJ, Glenn TC, Kieran TJ, Pierson TW, Hoffberg SL, Scott PA, Bentley KE, Finger JW, Louha S, Troendle N, Diaz-Jaimes P, Mauricio R, Faircloth BC. 2019.
 Adapterama III: Quadruple-indexed, double/triple-enzyme RADseq libraries (2RAD/3RAD) PeerJ 7:e7724 <u>https://doi.org/10.7717/peerj.7724</u>
- Beever, E.A., C. Ray, P.W. Mote, and J.L. Wilkening. 2010. Testing alternative models of climate-mediated extirpations. Ecological Applications 20:164-178.
- Benhamou, S. 2011. Dynamic approach to space and habitat use based on biased random bridges. PLoS One 6:e14592.

- Blymyer, M.J. 1976. A new elevation record for the New England cottontail (*Sylvilagus transitionalis*) in Virginia. Chesapeake Science 17(3):220-221.
- Bond, B.T., B.D. Leopold, L.W. Burger, and K.D. Godwin. 2001. Movements and home range dynamics of cottontail rabbits in Mississippi. Journal of Wildlife Management 65(4):1004-1013.
- Bond, B.T., L.W. Burger, B.D. Leopold, J.C. Jones, and K.D. Godwin. 2002. Habitat use by cottontail rabbits across multiple spatial scales in Mississippi. Journal of Wildlife Management 66(4):1171-1178.
- Boyce, K.A., and R.E. Barry. 2007. Seasonal home range and diurnal movements of *Sylvilagus obscurus* (Appalachian cottontail) at Dolly Sods, West Virginia. Northeastern Naturalist 14:99-110.
- Calenge, C. 2006. The package 'adehabitat' for the R software: a tool for the analysis of space and habitat use by animals. Ecological Modelling 197:516-519.
- Calenge, C. 2020. Package 'adehabitatHR'. Accessed on 15 February 2020 https://cran.rproject.org/web/packages/adehabitatHR/adehabitatHR.pdf46 pp.
- Campbell, J.W., M.T. Mengak, S.B. Castleberry, and J.D. Mejia. 2010. Distribution and status of uncommon mammals in the southern Appalachian Mountains. Southeastern Naturalist 9(2):275-302.
- Chapman, B.R. 2007. Appalachian cottontail Sylvilagus obscurus (Chapman, Cramer, Dippenaar, and Robinson 1992). Pp. 243-251. The Land Manager's Guide to Mammals of the South (M.K. Trani, W.M. Ford, and B.R. Chapman, eds.), The Nature Conservancy, Atlanta, GA.
- Chapman, J.A., K.L. Cramer, N.J. Dippenaar, and T.J. Robinson. 1992. Systematics and biogeography of the New England cottontail, *Sylvilagus transitionalis* (Bangs, 1985), with the description of a new species from the Appalachian Mountains. Proceedings of the Biological Society of Washington 105(4):841-866.
- Chapman, J.A., and R.P. Morgan. 1973. Systematic status of the cottontail complex in western Maryland and nearby West Virginia. Wildlife Monographs 36:3-54.
- Cheeseman, A.E., J.B. Cohen, S.J. Ryan, and C.M. Whipps. 2019. Determinants of home-range size of imperiled New England cottontails (*Sylvilagus transitionalis*) and introduced eastern cottontails (*Sylvilagus floridanus*). Canadian Journal of Zoology 97(6):516-523.
- Chen, C., E. Durand, F. Forbes, and O. François. 2007. Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Molecular Ecology Notes 7(5): 747-756.

- Conner, L.M., and B.W. Plowman. 2001. Using Euclidean distance to assess non-random habitat use. Pp. 526-531 *in* Radio tracking and animal populations (J.J. Millspaugh and J.M. Marzluff, eds.), Academic Press, San Diego, CA.
- Conner, L.M., M.D. Smith, and L.W. Burger. 2003. A comparison of distance-based and classification-based analysis of habitat use. Ecology 84:526-531.
- Danecek, P., A. Auton, G. Abecasis, C.A. Albers, E. Banks, M.A. DePristo, R.E. Handsaker, G. Lunter, G.T. Marth, S.T. Sherry, G. McVean, and R. Durbin. 2011. The variant call format and VCFtools. Bioinformatics 27(15): 2156–2158.
- Davey, J.W., P.A. Hohenlohe, P.D. Etter, J.Q. Boone, J.M. Catchen, and M.L. Blaxter. 2011. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nature Reviews Genetics 12: 499–510.
- Davey, J.W. and M.L. Blaxter. 2010. RADSeq: next-generation population genetics. Briefings in Functional Genomics 9(5-6): 416–423.
- deBow, T.M., W.D. Webster, and P.W. Sumner. 1998. Range expansion of the coyote, *Canis latrans* (Carnivora:Canidae), into North Carolina; with comments on some management implications. Journal of the Elisha Mitchell Scientific Society 114(3):113-118.
- Diggins, C.A., and W.M. Ford. 2017. Microhabitat selection of the Virginia northern flying squirrel (*Glaucomys sabrinus fuscus* Miller) in the Central Appalachains. Northeastern Naturalist 24:173-190.
- Diggins, C.A., A. Silvis, C.A. Kelly, and W.M. Ford. 2017. Home range, den selection and habitat use of Carolina northern flying squirrels (*Glaucomys sabrinus coloratus*). Wildlife Research 44:427-437.
- Edelman, A.J. 2019. *Sylvilagus obscurus* (Lagomorpha: Leporidae). Mammalian Species 51(984):128-135.
- ESRI. 2019. ArcGIS Desktop: Release 10.7.1. Redlands, CA: Environmental Systems Research Institute.
- Evanno, G., S. Regnaut, and J. Goudet. 2005. Detecting the number of clusters of individuals using the software structure : a simulation study. Molecular Ecology 14(8): 2611-2620.
- Fenderson, L.E., A.I. Kovach, J.A. Litvaitis, and M.K. Litvaitis. 2011. Population genetic structure and history of fragmented remnant populations of the New England cottontail (Sylvilagus transitionalis). Conservation Genetics 12: 943–958.
- Fick, S.E., and R.J. Hijmans. 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37 (12):4302-4315.

- Fuller, S., and A. Tur. 2012. Conservation strategy for the New England cottontail (*Sylvilagus transitionalis*). Regional New England Cottontail Initiative. 148pp. Accessed 20 March 2020 (www.newenglandcottontail.org).
- Gnirke, A., A. Melnikov, J. Maguire, P. Rogov, E.M. LeProust, W. Brockman, T. Fennell, G. Giannoukos, S. Fisher, C. Russ, S. Gabriel, D.B. Jaffe, E.S. Lander, and C. Nusbaum. 2009. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nature Biotechnology 27: 182–189.
- Hartman, A.C., and R.E. Barry. 2010. Survival and winter diet of Sylvilagus obscurus (Appalachian cottontail) at Dolly Sods, West Virginia. Northeastern Naturalist 17(3):505-516.
- Hill, E.P., P.W. Sumner, and J.B. Wooding. 1987. Human influence on range expansion of coyotes in the Southeast. Wildlife Society Bulletin 15:521-524.
- Hoffberg, S.L., T.J. Kieran, J.M. Catchen, A. Devault, B.C. Faircloth, R. Mauricio, and T.C. Glenn. 2016. RAD cap: sequence capture of dual-digest RAD seq libraries with identifiable duplicates and reduced missing data. Molecular Ecology Resources 16(5): 1264-1278.
- Jakobsson, M. and N.A. Rosenburg. 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23(14): 1801–1806.
- Katzner, T.E., K.L. Parker, and H.H. Harlow. 1997. Metabolism and thermal response in winter-acclimatized pygmy rabbits (*Brachylagus idahoensis*). Journal of Mammalogy 78: 1053-1062.
- Kays, R.W., M.E. Gompper, and J.C. Ray. 2008. Landscape ecology of eastern coyotes based on large-scale estimates of abundance. Ecological Applications 18(4):1014-1027.
- Koprowski, J.L., S.R.B. King, and M.J. Merrick. 2008. Expanded home ranges in a peripheral population: Space use by endangered Mt. Graham red squirrels. Endangered Species Research 4:447-232.
- Kovach, A.L., M.K. Litvaitis, and J.A. Litvaitis. 2003. Evaluation of Fecal mtDNA Analysis as a Method to Determine the Geographic Distribution of a Rare Lagomorph. Wildlife Society Bulletin 31(4): 1061-1065.
- Litvaitis, J.A., B. Johnson, W. Jakubas, and K. Morris. 2003. Distribution and habitat features associated with remnant populations of New England cottontails in Maine. Canadian Journal of Zoology 81:877-887.

- Litvaitis, M.K. and J.A. Litvaitis. 1996. Using Mitochondrial DNA to Inventory the Distribution of Remnant Populations of New England Cottontails. Wildlife Society Bulletin 24(4): 725-730.
- Litvaitis, J.A., D.L. Verbyla, and M.K. Litvaitis. 1991. A field method to differentiate New England and eastern cottontails. Transactions of the Northeastern Section of the Wildlife Society 48:11-14.
- Litvaitis, M.K., J.A. Litvaitis, W.J. Lee, and T.D. Kocher. 1997. Variation in the mitochondrial DNA of the *Sylvilagus* complex occupying the northeastern United States. Canadian Journal of Zoology 75:595-605.
- Meirmans, P.G. 2012. AMOVA-Based Clustering of Population Genetic Data. Journal of Heredity 103(5): 744–750.
- Meirmans, P.G. and P.H. Van Tienderen. 2004. Genotype and Genodive : two programs for the analysis of genetic diversity of asexual organisms. Molecular Ecology Resources 4(4): 792-794.
- NatureServe. 2015. Comprehensive Report Species Sylvilagus obscurus. Explorer.natureserve.org. Accessed on 21 November 2015 from <u>http://explorer.natureserve.org/servlet/NatureServe?searchName=Sylvilagus+obscurus</u>
- North Carolina Department of Transportation [NCDOT]. 2020. NC State County Boundary GIS data set. NC OneMap Open Data: Boundaries. Gis11.services.ncdot.gov Accessed March 2020.
- North Carolina Wildlife Resources Commission. 2015. North Carolina Wildlife Action Plan. Raleigh, NC.
- Okou, D.T., K.M. Steinberg, C. Middle, D.J. Cutler, T,J, Albert, and M.E. Zwick. 2007. Microarray-based genomic selection for high-throughput resequencing. Nature Methods 4: 907–909.
- Peterson, B.K., J.N. Weber, E.H. Kay, H.S. Fisher, and H.E. Hoekstra. 2012. Double Digest RADseq: An Inexpensive Method for De Novo SNP Discovery and Genotyping in Model and Non-Model Species. PLoS One 7(5): e37135.
- Phillips, S.J., M. Dudík, and R.E. Schapire. 2020. Maxent software for modeling species niches and distributions (Version 3.4.1). Available from url: http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed on 2020-3-15.
- Probert, B.L., and J.A. Litvaitis. 1996. Behavioral interactions between invading and endemic lagomorphs: Implications for conserving a declining species. Biological Conservation 76:289-295.

- QGIS Development Team. 2019. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org
- Roberts, N.M., and S.M. Crimmins. 2010. Bobcat population status and management in North America: Evidence of large-scale population increase. Journal of Fish and Wildlife Management 1(2):169-174.
- Rohland, N. and D. Reich. 2012. Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Research 22: 939-946.
- Russell, K.R., C.E. Moorman, and D.C. Guynn. 1999. Appalachian cottontails, Sylvilagus obscurus (Lagomorpha: Leporidae), from the South Carolina mountains with observations on habitat use. Journal of the Elisha Mitchell Society 115(3):140-144.
- Schmutz, J.A., and G.C. White. 1990. Error in telemetry studies: Effect of animal movement on triangulation. Journal of Wildlife Management 54:506-510.
- Sole, J.D. 1999. Distribution and habitat of Appalachian cottontails in Kentucky. Proceedings of the Annual Conference of the Southeastern Association of Fish and Wildlife Agencies 53:444-448.
- Southeast GAP Analysis Project. 2011. Southeast GAP Analysis Project Species Modeling Report (pp. 1-4). Raleigh: The Biodiversity and Spatial Information Center, North Carolina State University. Retrieved from <u>http://www.basic.ncsu.edu/segap/datazip/reports/SppReport_mAPCO.pdf</u>
- Stevens, M.A., and R.E. Barry. 2002. Selection, size, and use of home range of the Appalachian cottontail, *Sylvilagus obscurus*. Canadian Field-Naturalist 116(4):529-535.
- Syfert, M.M., M.J. Smith, and D.A. Coomes. 2013. The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models. PLOS One 8: e55158.
- Todesco, M., M.A. Pascual, G.L. Owens, K.L. Ostevik, B.T. Moyers, S. Hübner, S.M. Heredia, M.A. Hahn, C. Caseys, D.G. Bock, and L.H. Rieseberg. 2016. Hybridization and extinction. Evolutionary Applications 9(7): 892-908.
- Webster, W.D., J.F. Parnell, and W.C. Briggs. 1985. Mammals of the Carolinas, Virginia, and Maryland. University of North Carolina Press, Chapel Hill, NC.
- White, G.C., and R.A. Garrott. 1990. Analysis of wildlife radio-tracking data. Academic Press, New York, NY. 383 pp.
- Wolf, D.E., N. Takebayashi, and L.H. Rieseberg. 2001. Predicting the Risk of Extinction through Hybridization. Conservation Biology 15(4): 1039-1053.

Appendix A. Bioclim variables used in species distributional modeling (courtesy of Fick and Hijmans 2017)

Code	Variable Description
BIO1	Annual Mean Temperature
BIO2	Mean Diurnal Range (Mean of monthly (max temp - min temp))
BIO3	Isothermality (BIO2/BIO7) (×100)
BIO4	Temperature Seasonality (standard deviation ×100)
BIO5	Max Temperature of Warmest Month
BIO6	Min Temperature of Coldest Month
BIO7	Temperature Annual Range (BIO5-BIO6)
BIO8	Mean Temperature of Wettest Quarter
BIO9	Mean Temperature of Driest Quarter
BIO10	Mean Temperature of Warmest Quarter
BIO11	Mean Temperature of Coldest Quarter
BIO12	Annual Precipitation
BIO13	Precipitation of Wettest Month
BIO14	Precipitation of Driest Month
BIO15	Precipitation Seasonality (Coefficient of Variation)
BIO16	Precipitation of Wettest Quarter
BIO17	Precipitation of Driest Quarter
BIO18	Precipitation of Warmest Quarter
BIO19	Precipitation of Coldest Quarter

Appendix B. The dependence of the predicted probability of *S. obscurus* presence on each variable included in our Maxent species distribution model. Relationships are depicted via univariate Maxent model. Trends for climatic variables may also reflect correlations with similar variables (see Appendix C). We have highlighted influential variables in gray.

Appendix C. Correlation matrix

Date	Location	NAD 83	Х	Y	Species	Sex	Mass (g)	Right Hindfoot (cm)	Right Ear Length (cm)	Left Ear Length (cm)	Ear Tag	Ear Sample (Y/N)	Fecal Sample (Y/N)	Collar Frequency
3/14/2018	Cradle of Forestry	17S			Sylvilagus obscurus	F	800	9.1	5.9		•	Y	Y	
3/30/2018	Cradle of Forestry	17S			Sylvilagus obscurus	F	1225	8.8	5.5	5.6	•	Y	Y	
4/20/2018	Smokies	17S			Tamiasciurus hudsonicus						•			
4/20/2018	Smokies	17S			Sylvilagus obscurus	F	1161	9.9	5.7	5.7	•	Y	Y	151.189
4/26/2018	Black Balsam	17S			Sylvilagus obscurus	М	1040	9	5.5	5.4	7	Y	Y	151.110
5/1/2018	Black Balsam	17S			Tamiasciurus hudsonicus						•			
5/1/2018	Black Balsam	17S			Tamiasciurus hudsonicus						•			
5/1/2018	Black Balsam	17S			Tamiasciurus hudsonicus						•			
5/1/2018	Black Balsam	17S			Tamiasciurus hudsonicus		•				•			
5/1/2018	Black Balsam	17S			Tamiasciurus hudsonicus		•				•			
5/1/2018	Black Balsam	17S			Sylvilagus obscurus						•		Y	151.110
5/2/2018	Black Balsam	17S			Sylvilagus obscurus	F	1360	9.8	5.5	5.4	5	Y	Y	
5/2/2018	Black Balsam	17S			Tamiasciurus hudsonicus						•			
5/12/2018	Black Balsam	17S			Tamiasciurus hudsonicus		•				•			
5/12/2018	Cradle of Forestry	17S			Didelphis virginiana	•		•	•	•	•	•	•	•
5/13/2018	Cradle of Forestry	17S			Sylvilagus obscurus	F	1190	9	5.3	5.3	4	Y	Y	151.070

Appendix D. All captures obtained during trapping sessions for Appalachian cottontail (*Sylvilagus obscurus*) conducted in the western North Carolina in 2018 and 2019.

10/24/2018	Roan Mountain	17S		Didelphis virginiana									
10/25/2018	Roan Mountain	17S		Sylvilagus obscurus	F	960	Ν	5.5	5.5	•	Y	Y	151.150
10/30/2018	Roan Mountain	17S		Sylvilagus floridanus	М	710	8.8	5	5.2	15	Y	?	
10/30/2018	Roan Mountain	17S		Sylvilagus floridanus?	U				•	•	Ν	Ν	
10/30/2018	Roan Mountain	17S		Sylvilagus spp	F	1130	9.9	5.9	6	13	Y	?	
10/30/2018	Roan Mountain	17S		Sylvilagus obscurus	М	620	8.6		•	14	Y	Y	
10/30/2018	Roan Mountain	17S		Didelphis virginiana					•	•	•	•	
10/30/2018	Roan Mountain	17S		Sylvilagus obscurus	F	760	8.9	5.6	5.5	•	Y	Y	151.090
10/30/2018	Roan Mountain	17S		Didelphis virginiana						•			
10/30/2018	Roan Mountain	17S		Didelphis virginiana					•	•	•	•	
10/31/2018	Roan Mountain	17S		Didelphis virginiana				•	•	•	•	•	
10/31/2018	Roan Mountain	17S		Didelphis virginiana					•	•	•		
10/31/2018	Roan Mountain	17S		Procyon lotor					•	•	•		
10/31/2018	Roan Mountain	17S		Peromyscus spp					•	•	•		
10/31/2018	Roan Mountain	17S		Sylvilagus obscurus	М	1130	9.7	5.6	5.6	•	Y	Y	151.229
10/31/2018	Roan Mountain	17S		Sylvilagus obscurus					•	•	•		151.090
10/31/2018	Roan Mountain	17S		Tamiasciurus hudsonicus					•	•	•	•	•
10/31/2018	Roan Mountain	17S		Didelphis virginiana				•	•	•	•	•	•
10/31/2018	Roan Mountain	17S		Didelphis virginiana									•

11/2/2018	Cradle of Forestry	17S		Sylvilagus obscurus	М	980	9.5	5.5	5.6		Y	Y	151.209
11/2/2018	Cradle of Forestry	17S		Sylvilagus obscurus	F	1200	8.9	5.6	5.6		Y	Y	150.809
11/2/2018	Cradle of Forestry	17S		Procyon lotor									
11/2/2018	Cradle of Forestry	17S		Sylvilagus obscurus	М	560	8	4.7	4.6	12	Y	Y	
11/2/2018	Cradle of Forestry	17S		Sylvilagus obscurus	F	1410	9.8	5.6	5.5		Y	Y	151.169
11/11/2018	Cradle of Forestry	17S		Procyon lotor									
11/12/2018	Cradle of Forestry	17S		Procyon lotor									
11/12/2018	Cradle of Forestry	17S		Sciurus carolinensis									
11/19/2018	BRP/215	17S		Procyon lotor		•							
11/20/2018	Cradle of Forestry	17S		Sylvilagus obscurus	F	1190	9.5	5.8	5.8		Y	Y	151.009
11/20/2018	Cradle of Forestry	17S		Procyon lotor	•	•	•		•			•	
11/20/2018	Cradle of Forestry	17S		Sciurus carolinensis	•		•		•			•	
11/20/2018	Cradle of Forestry	17S		Sylvilagus obscurus	М	690	8.2	4.9	4.9	12		Y	
11/20/2018	Cradle of Forestry	17S		Didelphis virginiana		•			•				
11/26/2018	Cradle of Forestry	17S		Sylvilagus obscurus	М	700	8.5	4.9	4.9	17	Y	Y	
11/29/2018	BRP/215	175		Glaucomys sabrinus coloratus									
12/4/2018	Hatchery	17S		Didelphis virginiana									
1/8/2019	Cradle of Forestry	17S		Didelphis virginiana									
1/9/2019	Hatchery	17S		Sciurus carolinensis									

1/9/2019	Hatchery	17S		Sciurus carolinensis									
9/6/2019	Roan	17S		Didelphis virginiana									•
9/6/2019	Roan	17S		Sylvilagus obscurus	F	1075	9.7	6.2	6.2	20	Y	Ν	150.670
9/8/2019	Roan	17S		Didelphis virginiana		•							
9/8/2019	Roan	17S		Sylvilagus obscurus	F	660	7.8	4.6	4.6	22	Y	Y	
9/9/2019	Roan	17S		Procyon lotor									
9/9/2019	Roan	17S		Sylvilagus floridanus	М	990	9.7	5.8	5.8	18	Y	Y	
9/12/2019	Roan	17S		Didelphis virginiana		•							
9/15/2019	Roan	17S		Didelphis virginiana									
9/16/2019	Roan	17S		Sylvilagus obscurus	М	540	7.7	4.7	4.7		Y	Y	
9/16/2019	Roan	17S		Sylvilagus floridanus?	F	830	9.7	6	6	23	Y	Y	
9/16/2019	Roan	17S		Sylvilagus floridanus?	М	820	9.8	5.5	5.5	19	Y	Y	
9/16/2019	Roan	17S		Sylvilagus obscurus	М	880	8.9	5.6	5.5	25	Y	Y	•
9/16/2019	Roan	17S		Sylvilagus obscurus	F	1280	9.5	5.3	5.2	16	Y	Y	150.629
9/17/2019	Roan	17S		Sylvilagus obscurus	М	820	9.3	5.4	5.3	27	Y	Y	151.129
9/17/2019	Roan	17S		Sylvilagus floridanus	F	880	9.5	5.7	5.7	24	Y	Y	
9/17/2019	Roan	17S		Sylvilagus floridanus	F	1080	9.7	5.7	5.6	21	Y	N	
9/17/2019	Roan	17S		Sylvilagus obscurus	М	700	8.3	5.2	5.2	28	Y	Y	151.029
9/17/2019	Roan	17S		Didelphis virginiana									

9/17/2019	Roan	17S		Sylvilagus obscurus	F	1050	9.2	5.2	5.2	29	Y	Y	151.369
9/18/2019	Roan	17S		Didelphis virginiana	•		•						
9/18/2019	Roan	17S		Didelphis virginiana			•				•		
9/24/2019	Mount Mitchell	17S		Sylvilagus obscurus	М	650	8.5	4.9	4.9	32	Y	Y	
9/24/2019	Mount Mitchell	17S		Sylvilagus floridanus?	М	740	8.8	5	5	31	Y	Y	
9/24/2019	Mount Mitchell	17S		Sylvilagus obscurus	М	670	8.4	5.1	5.1	30	Y	Y	
9/25/2019	Mount Mitchell	17S		Sylvilagus obscurus	М	1010	9.6	5.1	5	34	Y	Y	151.474
9/25/2019	Mount Mitchell	17S		Sylvilagus obscurus	М	1220	9.6	5.6	5.6	33	Y	Y	151.431
9/26/2019	Mount Mitchell	17S		Sylvilagus obscurus	М	670	8.4	5.1	5.1	30		Y	
10/10/2019	Black Balsam	17S		Sylvilagus obscurus	F	460	7.8	4.8	4.7	35	Y	Y	
10/10/2019	Black Balsam	17S		Sylvilagus obscurus?	М	1000	9.3	5.6	5.6	46	Y	Y	
10/11/2019	Black Balsam	17S		Sylvilagus obscurus	F	460	7.8	4.8	4.7	35		Ν	
10/11/2019	Black Balsam	17S		Sylvilagus obscurus	М	1060	9.3	5.3	5.4	36	Y	Y	151.454
10/12/2019	Black Balsam	17S		Sylvilagus obscurus?	F	1500	9.2	5.8	5.8	37	Y	Y	
10/12/2019	Black Balsam	17S		Sylvilagus obscurus	М	1175	10	6	5.9	39	Y	Y	151.590
10/17/2019	Black Balsam	17S		Sylvilagus obscurus	М	1255	10.1	5.8	5.8	40	Y	Y	151.609
10/17/2019	Black Balsam	17S		Sylvilagus obscurus	F	1170	9.8	5.9	5.8	47	Y	Y	150.549
10/18/2019	Black Balsam	17S		Sylvilagus obscurus	М	1020	9.6	5.5	5.6	42	Y	Y	150.449
10/24/2019	Black Balsam	17S		Sylvilagus obscurus	М	1210	9.7	5.9	5.9	41	Y	N	151.647

10/24/2019	Black Balsam	17S		Sylvilagus obscurus	М	790	9.6	5.5	5.6	43	Yes	Yes	151.689
11/4/2019	Panthertown	17S		Sylvilagus obscurus	М	1120	9.4	5.9	5.9	44	Yes	Yes	151.710
11/5/2019	Panthertown	17S		Sylvilagus obscurus	М	1160	9.4	5.9	5.9	44		Yes	151.710
11/11/2019	Panthertown	17S		Sylvilagus obscurus	М	1120	9.4	4.9	5.9	44	•	Yes	151.710
11/11/2019	Panthertown	17S		Sylvilagus obscurus?	М	1500	10.2	6.2	6.2	38	Yes	Yes	
11/18/2019	Cradle of Forestry	17S		Didelphis virginiana	•		•		•		•	•	
11/18/2019	Cradle of Forestry	17S		Sylvilagus obscurus	F	1450	10.2	5.8	5.7	45	Yes	Yes	151.770 (151.009)
11/22/2019	Cradle of Forestry	17S		Procyon lotor									
11/26/2019	Cradle of Forestry	17S		Sylvilagus obscurus	F	1160	9.7	5.7	5.7	48	Yes	Yes	151.289
11/26/2019	Cradle of Forestry	17S		Sylvilagus obscurus	F	1450	10.2	5.8	5.7	45		Yes	151.770 (151.009)
11/29/2019	Panthertown	17S		Procyon lotor									
12/2/2019	Cradle of Forestry	17S		Rattus rattus									
12/2/2019	Cradle of Forestry	17S		Sylvilagus obscurus	М	790	9.2	5.2	5.1	50	Yes	Yes	151.249
12/2/2019	Cradle of Forestry	17S		Sylvilagus obscurus	F	1450	10.2	5.8	5.7	45		Yes	151.770

Appendix E. Individual information on radio-collared Appalachian cottontails (*Sylvilagus obscurus*) tracked the southern Appalachian Mountains in western North Carolina during 2018-2019 and 2019-2020. Sex is indicated as male (M) or female (F). Minimum convex polygon (MCP) and biased random bridges (BRB) home ranges are shown in hectares.

Leastion	Collar	Carr	Mass	No. of	Weeks	50%	95%	50%	95%
Location	No.	Sex	(g)	Points	Tracked	MCP	MCP	BRB	BRB
Black Balsam	150.449	Μ	1020	64	12	0.27	0.83	0.38	1.90
Black Balsam	150.549	F	1170	101	19	1.28	3.09	1.17	4.41
Black Balsam	151.110	Μ	1040	60	6	0.45	1.72	0.65	2.60
Black Balsam	151.454	Μ	1060	50	6	0.52	1.80	0.82	3.65
Black Balsam	151.590	Μ	1175	23+	2				
Black Balsam	151.609	Μ	1255	111	19	1.15	4.50	1.63	7.26
Black Balsam	151.689	Μ	790	52	12	0.19	0.67	0.41	1.73
Cradle of Forestry	150.809	F	1320	0*					
Cradle of Forestry	151.070	F	1190	34	3	0.21	0.82	0.40	1.95
Cradle of Forestry	151.169	F	1560	149	20	2.16	13.78	2.5	19.44
Cradle of Forestry	151.209	Μ	1080	148	20	1.02	6.10	2.58	14.33
Cradle of Forestry	151.249	Μ	790	82	11	0.26	0.55	0.11	0.83
Cradle of Forestry	151.289	F	1160	105	14	0.28	1.07	0.27	1.17
Cradle of Forestry	151.770	F	1450	200	24	0.26	0.985	0.33	3.84
Great Smoky Mts.	151.189	F	1161	48	7	0.3	2.24	0.52	2.78
Mt. Mitchell	151.431	Μ	1220	110	22	1.65	9.05	2.23	11.92
Panthertown	151.710	Μ	1120	119	16	1.83	7.03	1.34	5.01
Roan Mts.	150.629	F	1280	61	7	0.66	4.32	0.74	5.40
Roan Mts.	151.029	Μ	700	33	4	0.74	1.81	0.93	3.36
Roan Mts.	151.129	Μ	820	58	7	0.72	3.0	0.97	4.47
Roan Mts.	151.229	Μ	1250	39	10	0.96	2.49	2.63	14.36
Roan Mts.	151.369	F	1050	138	23	1.07	2.96	0.91	4.04

⁺Had under 30 telemetry points, so was excluded from home range and habitat analysis.

*Died 2 days after collaring, so no telemetry data was collected.

Appendix F. Individual biased random bridge home range estimates for radio-collared Appalachian cottontails (*Sylvilagus obscurus*) tracked in western North Carolina in 2018-2020.

Field Label	Lab	qPCR	Date	Collection	Region	Elevation	Sample	DD Lat	DD Long
	Label	ID	Collected	Location		(meters)	Туре		
1	SO 054	SF			Roan	1856	tissue		
104010101	SO 103	SO			Black	1795	scat		
					Balsam				
104010201	SO 104	SO			Black	1795	scat		
					Balsam				
104010301	SO 105	SO			Black	1795	scat		
					Balsam				
104010302	SO 106	SO			Black	1795	scat		
					Balsam				
104010901	SO 107	SO			Black	1788	scat		
					Balsam				
104011001	SO 108	SO			Black	1788	scat		
					Balsam				
104011002	SO 109	SO			Black	1788	scat		
					Balsam				
104011003	SO 110	SO			Black	1788	scat		
					Balsam				
104020101	SO 111	SO			Black	1799	scat		
					Balsam				
104020102	SO 112	SO			Black	1799	scat		
					Balsam				
104020201	SO 114	SO			Black	1799	scat		
					Balsam				
104020301	SO 115	SO			Black	1799	scat		
					Balsam				
104020302	SO 116	SO			Black	1799	scat		
					Balsam				
104020304	SO 118	SO			Black	1799	scat		
					Balsam				
104020401	SO 119	SO			Black	1799	scat		
					Balsam				
104020402	SO 120	SO			Black	1799	scat		
					Balsam				
104020501	SO 121	UND			Black	1799	scat		
					Balsam				
104020601	SO 122	SO			Black	1780	scat		
					Balsam				
104020701	SO 123	SO			Black	1780	scat		
					Balsam				
104020702	SO 124	SO			Black	1780	scat		
					Balsam				
104020703	SO 125	SO			Black	1780	scat		
					Balsam				
104020802	SO 127	SO			Black	1780	scat		
					Balsam				
150401010	SO129	SO			Black	1077	scat		
1					Balsam				

Appendix G. ALL SAMPLES qPCRed. A qPCR label of "SF" refers to *Sylvilagus floridanus*, "SO" refers to *Sylvilagus obscurus*, and "UND" refers to undetermined.

150401010	SO130	SO			Black	1077	scat		
2	\$0131	50			Balsam	1077	scot		
3	30131	30			Balsam	1077	scat		
150401010	SO132	SO			Black	1077	scat		
4					Balsam				
150401030	SO133	SO			Black	1077	scat		
1					Balsam				
150401030	SO134	SO			Black	1077	scat		
2	0.000				Balsam	1007			
190201030	SO 090	80			Roan	1807	scat		
1	SO 001	50			Roan	1807	scat		
190201040	30 091	30			Koan	1007	scal		
190201040	SO 092	SO			Roan	1807	scat		
2		~ ~			Trouin	1007	seat		
190201090	SO 093	SF			Roan	1807	scat		
1									
190201090	SO 094	SF			Roan	1807	scat		
2									
190201090	SO 095	SF			Roan	1807	scat		
3									
190202040	SO 096	UND			Roan	1787	scat		
1	~~~~	~~			-	4 - 0 -			
190202040	SO 097	SO			Roan	1787	scat		
2	50.009	CE			Deen	1707			
190202040	50 098	SF			Roan	1/8/	scat		
3	SO 000	50			Roan	1787	scat		
190202030	30 099	30			Koan	1/0/	scal		
01040PP1	SO 128	SO			Black	1780	scat		
01010111	00120	~ ~			Balsam	1,00	sear		
150401OP	SO135	SF			Black	1061	scat		
P01					Balsam				
190201020	SO 089	SF			Roan	1807	scat		
1 Old									
190202OP	SO 102	SO			Roan	1776	scat		
P 2BB									
190202OP	SO 100	SO			Roan	1787	scat		
PI 1002020D	SO 101	50			Deen	1776			
1902020P	50 101	50			Roan	1//6	scat		
F2	\$0104	50	4/14/201	Flat Laural	Black	1670	scot		
Flat Laurel	50194	50	8	W-4	Balsam	1079	scat		
- W 4 175			0		Duibuili				
0327382,									
3910362									
50-11 large	SO 061	SO			Roan	1832	scat		
50-11	SO 062	SO			Roan	1832	scat		
small					ļ				
50-13	SO 072	SO			Roan	1816	scat		
fresher									
large		1							

50-13	SO 071	SO			Roan	1816	scat	
weathered								
large	0.0.00	0.0			D	1011		
50-14	SO 068	80			Roan	1811	scat	
50-15 large	SO 069	SF			Roan	1803	scat	
50-19 large	SO 063	SO			Roan	1771	scat	
50-19 large	SO 052	UND			Roan	1771	scat	
Small	~ ~ ~ ~ ~ ~							
50-19	SO 064	UND			Roan	1771	scat	
small								
50-20 large	SO 066	SO			Roan	1763	scat	
50-20	SO 053	SO			Roan	1763	scat	
small								
50-20	SO 065	UND			Roan	1763	scat	
small								
50-rogue	SO 051	SO			Roan	1763	scat	
small	0.0.07	0.0			D	17(2)		
50-rogue	SO 067	so			Roan	1763	scat	
small	50126	50			Dlash	1054		
BBOD01	50136	50			Black	1054	scat	
BBODD03	\$0137	50			Black	1006	scot	
BB01103	30137	30			Balsam	1090	scal	
BBOPP201	\$0138	50			Black	1082	scat	
bb011201	50150	50			Balsam	1002	scat	
BBOPP202	SO139	SO			Black	1082	scat	
22011202	2010)	~ ~			Balsam	1002	seat	
BBOPP203	SO140	SO			Black	1082	scat	
					Balsam			
BBOPP204	SO141	SO			Black	1082	scat	
					Balsam			
Big Knob	SO192	SO	3/23/201	Big Knob 0-	GRSM??	1320	scat	
0-1			8	1				
Black	SO195	SO	4/14/201	Flat Laurel	Black	1673	scat	
Balsam			8	W-2A	Balsam			
Flat								
Laurel-								
Rlack	\$0206	50	4/25/201	Plack	Plack	1746	scot	
Balsam	30200	30	4/25/201	Balsam -	Balsam	1740	scal	
Opp 1			0	opportunisti	Daisain			
Opp. 1				c				
Black	SO169	SO	3/17/201	Black	Black	1448	scat	
Balsam Rd			8	Balsam	Balsam			
W-0-1				Road W pt				
				#0				
Black	SO189	SO	3/17/201	Black	Black	1759	scat	
Balsam Rd			8	Balsam	Balsam			
W-9-1				Road W pt				
	0.011		0.41=12=1	#9		1850		
Black	SO190	SO	3/17/201	Black	Black	1759	scat	
Balsam Rd			8	Balsam Dood Wat	Balsam			
VV-9-2				Koad w pt				
		I		#ソ				

Black	SO191	SO	3/17/201	Black	Black	1759	scat		
Balsam Rd			8	Balsam Bood Wat	Balsam				
W-9-3				#9					
BlackMoun	SO270	SO	14-Feb-	Black	Black	2006	scat		
tainMount			19	Mountain,	Mountains				
Mitchell2-				Mount					
10-1				Mitchell 2					
BlackMoun	SO271	SO	14-Feb-	Black	Black	1817	scat		
tainVisitor			19	Mountain	Mountains				
Center4-4-				Visitor Contor 4					
BRP	SO357	SO	25-Apr-	Flat Rock	Blue Ridge	1208	tissue		
Roadkill	50557	50	19	r hat recent	Parkway	1200	lissue		
Carver's	SO424	SO	9/16/201	Carver's Gap	Roan	1644	tissue		
Gap SYOB			9						
male Trap									
CG8 no									
Carvers	SO416	SO	9/17/201	Carver's Gan	Roan	1629	tissue		
Gap	50110	50	9	Curver 5 Cup	Roun	102)	lissue		
151.129									
Trap CG6									
male									
CF2 Trap	SO223	so	11/3/201 8	Cradle of Forestry	Pisgah NF	1003	Tissue		
CG1 015	SO217T	SF	10/30/20	Carver's Gap	Roan	1657	Tissue		
	~ ~ ~ ~ ~ ~		18	- Roan Mtn.					
CG15 013	SO218T	SF	10/30/20 18	Carver's Gap	Roan	1675	Tissue		
CG6 014	SO219	SO	10/30/20 18	Carver's Gap	Roan	1653	Tissue		
ChestnutBa ld1-1-1	SO247	SO	21-Jan- 19	Chestnut Bald 1	276	1791	scat		
Clingman's	SO204	SF	4/20/201	Clingman's	GRSM	2000	scat		
Dome 0-1			8	Dome 0-1					
Clingman's	SO205	SF	4/20/201	Clingman's	GRSM	2000	scat		
Clingman's	\$0166	50	8 3/16/201	Clingman's	GRSM	1616	scat		
Dome 2-	30100	30	8	Dome 2 pt	UKSWI	1010	scat		
10-1			Ũ	#10					
Clingman's	SO163	SO	3/16/201	Clingman's	GRSM	1624	scat		
Dome 2-4-			8	Dome 2 pt					
1	00164	50	2/16/201	#4	CDSM	1.624			
Dome 2.4	50164	50	3/10/201 8	Dome 2 nt	GKSM	1024	scat		
2 2			0	#4					
Clingman's	SO165	SO	3/16/201	Clingman's	GRSM	1624	scat		
Dome 2-4-			8	Dome 2 pt					
3				#4					
Clingman's	SO167	SO	3/17/201	Clingman's	GRSM	1725	scat		
Dome Rd	50266	50	8	Dome Road	D1a ala M(+)	1900	dias :		
v Ridge	20200	50	9/24/201	Ridge Mt	Black Miths	1809	ussue		
, muge			ĺ	Mitchell					
				-	1				

CR11 -								
Commissar	SO363	SO	9/24/201	Commissary	Black Mtns	1842	tissue	
y Ridge			9	Ridge Mt				
CR6 -				Mitchell				
tissue Cradle of	\$0391	50	11/26/20	Cradle of	Pisgah NF	1003	tissue	
Forestry	30371	50	11/20/20	Forestry	1 Isgan IVI	1005	ussue	
CF11				5				
151.289								
048 - tissue	50204	50	12/2/201	Credle of	Discal NE	1005	4:0000	
Forestry	30394	30	9	Forestry	risgan Nr	1005	ussue	
CF2			-	rorosay				
151.249								
050 - tissue	~ ~ · - ~	~ ~						
Devil's Cthouse N	SOI79	so	3/13/201	Devil's Cthouse N 5	Black	16/3	scat	
5			0	Culouse IN-5	Daisain			
Devil's	SO184	SO	3/13/201	Devil's	Black	1653	scat	
Cthouse			8	Cthouse SE-	Balsam			
SE-2	\$0190	50	2/12/201	2 Deville	Dlash	1670	aget	
Cthouse-7	50180	30	3/13/201 8	Cthouse-7	Balsam	1072	scat	
Devil's	SO174	SO	3/13/201	Devil's	Black	1671	scat	
Cthouse-N-			8	Cthouse-N-	Balsam			
2A	~~~~	~ ~		2A				
Devil's Cthouse N	SO175	SO	3/13/201	Devil's Cthouse N	Black	1671	scat	
2B			0	2B	Daisaili			
Devil's	SO176	SO	3/13/201	Devil's	Black	1671	scat	
Cthouse-N-			8	Cthouse-N-	Balsam			
2C	00177		2/12/201	2C	D1 1	1 (70)		
Devil's Cthouse-N-	SO1//	50	3/13/201 8	Devil's Cthouse-N-	Black	16/2	scat	
3A			0	3A	Duisain			
Devil's	SO178	SO	3/13/201	Devil's	Black	1672	scat	
Cthouse-N-			8	Cthouse-N-	Balsam			
3B Davil'sCou	50248	50	21 Jan	3B Dovil's	Black	1708	sent	
rthouseN2-	30240	30	19	Courthouse	Balsam	1708	scat	
1-1			-	N 2				
Flat Laurel	SO196	SO	4/14/201	Flat Laurel	Black	1673	scat	
- West -2B	0.0150	50	8	W-2B	Balsam	1.01		
Branch 0-1	50150	50	3/18/201	Branch 0-1	Black Balsam	1691	scat	
Flat Laurel	SO151	SO	3/18/201	Flat Laurel	Black	1691	scat	
Branch 0-2			8	Branch 0-2	Balsam			
Flat Laurel	SO152	SO	3/17/201	Flat Laurel	Black	1725	scat	
Branch 0-2			8	Branch 0-2	Balsam			
E Flat Laurel	SO207T	SO	4/26/201	Flat Laurel	Black	1729	tissue	
Branch	2020/1		8	Branch Trap	Balsam		10040	
151.110				FLBA1				

original capture								
Flat Laurel Branch C-5	SO162	SO	3/18/201 8	Flat Laurel Branch Central pt #5	Black Balsam	1670	scat	
Flat Laurel Branch E- 5-1	SO157	SO	3/18/201 8	Flat Laurel Branch E pt #5	Black Balsam	1721	scat	
Flat Laurel Branch E- 5-2	SO158	SO	3/18/201 8	Flat Laurel Branch E pt #5	Black Balsam	1721	scat	
Flat Laurel Branch E-7	SO159	SO	3/18/201 8	Flat Laurel Branch E pt #7	Black Balsam	1717	scat	
Flat Laurel Branch E- 9-1	SO160	SO	3/18/201 8	Flat Laurel Branch E pt #9	Black Balsam	1714	scat	
Flat Laurel Branch E- 9-2	SO161	SO	3/18/201 8	Flat Laurel Branch E pt #9	Black Balsam	1714	scat	
Flat Laurel Branch NE-3-1	SO153	SF	3/18/201 8	Flat Laurel Branch NE pt # 3	Black Balsam	1751	scat	
Flat Laurel Branch NE-3-2	SO154	SF	3/18/201 8	Flat Laurel Branch NE pt # 3	Black Balsam	1751	scat	
Flat Laurel Branch NE-3-3	SO155	SF	3/18/201 8	Flat Laurel Branch NE pt # 3	Black Balsam	1751	scat	
Flat Laurel Branch NE-3-4	SO156	SF	3/18/201 8	Flat Laurel Branch NE pt # 3	Black Balsam	1751	scat	
Flat Laurel FL18 151.647 male	SO410	SF	10/24/20 19	Flat Laurel	Black Balsam	1737	tissue	
Flat Laurel FL2 150.449 - tissue	SO379	SO	10/18/20 19	Flat Laurel	Black Balsam	1730	tissue	
Flat Laurel FL2 151.590 - tissue	SO382	SO	10/12/20 19	Flat Laurel	Black Balsam	1730	tissue	
Flat Laurel FL23 151.689 - tissue	SO385	SO	10/24/20 19	Flat Laurel	Black Balsam	1737	tissue	
Flat Laurel FL8 035 - tissue	SO376	SO	10/10/20 19	Flat Laurel	Black Balsam	1723	tissue	
Flat Laurel W-10	SO197	SO	4/14/201 8	Flat Laurel W-10	Black Balsam	1669	scat	

Ridge (J-1) SO408 SF 10/12/0 Graveyard Black 1762 tissue Fields Fields 19 Graveyard Black 1553 tissue Issue Graveyard SO402 SO 10/11/20 Graveyard Black 1553 tissue Graveyard SO397 SO 10/17/20 Graveyard Black 1563 tissue Graveyard SO397 SO 10/17/20 Graveyard Black 1563 tissue Graveyard SO397 SO 10/17/20 Graveyard Black 1563 tissue Graveyard SO399 SO 10/17/20 Graveyard Black 1543 tissue Graveyard SO399 SO 10/10/20 Graveyard Black 1538 tissue Image: So Graveyard SO360 SO 10/10/20 Graveyard Black 1538 tissue Image: So Graveyard SO360 SO 11/4	Forney	SO202	SO	3-9-18?	Forney	GRSM	1852	scat	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ridge 0-1	\$0408	SE	10/12/20	Ridge 0-1 Gravevard	Black	1762	ticena	
female FL18 SO Free Back 1553 tissue Graveyard Fields SO 10/11/20 Graveyard Fields 1553 tissue 10 Graveyard Fields SO397 SO 10/17/20 Graveyard Fields 1563 tissue 10 Graveyard Fields SO397 SO 10/17/20 Graveyard Fields 1563 tissue 10 Graveyard Fields SO399 SO 10/17/20 Graveyard Fields 1543 tissue 10 Graveyard Graveyard SO360 SO 10/10/20 Graveyard Fields 1538 tissue 1181 tissue Graveyard Mountain male GM7 SO 11/4/201 Green Mountain Panthertow n 1181 tissue 10 Gresen Mountain male GM7 SO SO 11/4/201 Green Roan Panthertow n 1238 tissue 10 Juv, F SO 056 SO In Roan 1685 tissue 10 Juv, F SO 056 SO <	Fields	30408	51	10/12/20	Fields	Balsam	1702	ussue	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	female			17	Tienas	Duisuin			
	FL18								
Fields GF10 151.454 - tissue19FieldsBalsamBalsamIssueGraveyard FieldsSO397 GF24 151.609 - tissueSO10/17/20 19Graveyard FieldsBlack Balsam1563tissueGraveyard FieldsSO399 GF24 19SO10/17/20 19Graveyard FieldsBlack Balsam1543tissueGraveyard FieldsSO399 FieldsSO10/17/20 19Graveyard FieldsBlack Balsam1543tissueGraveyard Fields GF4 UssueSO360 19SO10/10/20 19Graveyard FieldsBlack Balsam1538tissueGraveyard Fields GF4 Uo46 tissueSO409 9SO11/4/201 9Green Mountain nalePanthertow n1181 ntissueGreen Mountain male tag038 GM14SF11-Nov- 19Green Mountain nPanthertow n1238tissueJuv, F P2SO 058 10SOI/1/4/20 19Purchase RoanGRSM1499TissueJuv, F P2SO 058 10SOIRoan1706 1685tissueImage 1685Juv, F P2-8-1SO 059SFRoan1706 1685tissueImage 1690Image 1690Juv, F P2-8-1SO 299SFRoan1690 8catscatImage 1690Image 1690Little SO199SO4/14/201 	Graveyard	SO402	SO	10/11/20	Graveyard	Black	1553	tissue	
GF10 151.454 tissue SO 397 SO 10/17/20 19 Graveyard Fields Black Balsam 1563 tissue Image: second	Fields			19	Fields	Balsam			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	GF10								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	151.454 -								
$ \begin{array}{c} Graveyard \\ Green \\ Mountain \\ male \\ Green \\ Mountain \\ male \\ Green \\ Green \\ Mountain \\ male \\ Grave \\ Green \\ Green \\ Green \\ Mountain \\ male \\ Grave \\ Green \\ Gr$	tissue	0.0007		10/17/00		D1 1	15.0		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Graveyard	SO397	so	10/17/20	Graveyard	Black	1563	tissue	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	GE24			19	rielus	Daisain			
	151 609 -								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	tissue								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Graveyard	SO399	SO	10/17/20	Graveyard	Black	1543	tissue	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Fields			19	Fields	Balsam			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	GF27								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	150.549 -								
$ \begin{array}{c craveyard}{llllllllllllllllllllllllllllllllllll$	tissue	0.0260		10/10/20	<u> </u>	D1 1	1520		
Inclus 01-4 Od46 tissueInclusInclusData BalaniInclusData BalaniGreen Mountain male GM7 151.710SO11/4/201 9Green MountainPanthertow n1181 ntissueImage GM7 tissueGreen Mountain male tag038 GM14SF11-Nov- 19Green MountainPanthertow n1238 	Graveyard Eiglds CE4	50360	50	10/10/20	Graveyard	Black	1538	tissue	
Orionade Mountain male GM7 151.710SO11/4/201 	0.46 tissue			19	rielus	Daisain			
Mountain male GM7 151.710SO 050SOPMountain MountainnnNoteMountain nGreen Mountain male tag038SO 411SF11-Nov- 19Green MountainPanthertow n1238tissueImage: Constraint of the second seco	Green	SO409	SO	11/4/201	Green	Panthertow	1181	tissue	
male GM7 151.710ss11-Nov- 19Green Mountain MountainPanthertow n1238 ntissue tissuesGreen Mountain male tag038SO 411SF11-Nov- 19Green MountainPanthertow n1238 ntissueImage: Solar sector sec	Mountain	50109	50	9	Mountain	n	1101	lissue	
151.710	male GM7								
Green Mountain male tag038 GM14SF11-Nov- 19Green Mountain MountainPanthertow n1238tissueImage tagueGSMNPSO221SF10/18/20 18Purchase 18GRSM1499TissueImageImage tagueJuv, FSO 058SOImage 18Roan1706tissueImage tagueImage tagueJuv, FSO 059SFImage 18Roan1877tissueImage tagueJuv, FSO 056SOImage 19Roan1685tissueJuv, F, tag3-8-1SO 269SF11-Feb- 19Linville Gorge 31053scatLinville sam's KnobSO 198SO4/14/201 8Little Sam's RoabBlack Balsam1690scatLittle Sam's KnobSO 209TSO4/14/201 8Little Sam's RoabBlack Balsam1696scatLittle Sam's KnobSO 209TSO5/2/2018Black Balsam Trap1696scatImage scatlivetrap BalsamSO 209TSO5/2/2018Black Balsam Trap1793tissueImage scat	151.710								
Mountain male tag038 GM14IIIMountain nnnGM141018/20 18Purchase KnobGRSM1499TissueImage: Constraint of the second sec	Green	SO411	SF	11-Nov-	Green	Panthertow	1238	tissue	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Mountain			19	Mountain	n			
Indepose GM14SO221SF10/18/20 18Purchase KnobGRSM1499TissueJuv, FSO 058SORoan1706tissueJuv, FSO 059SFRoan1877tissueJuv, F, Trap 2SO 056SORoan1685tissueJuv, F, ge3-8-1SO 198SO4/14/201Linville Gorge 31053scatLintle Sam's KnobSO199SO4/14/201Little Sam's 8Black Balsam1690scatLittle Sam's KnobSO200SO4/14/201Little Sam's 8Black Balsam1696scatLittle Sam's KnobSO200SO4/14/201Little Sam's 8Black Balsam1696scatLittle Sam's KnobSO200SO4/14/201Little Sam's 8Black Balsam1696scatLittle Sam's KnobSO200SO4/14/201Little Sam's 8Black Balsam1696scatLittle Sam's KnobSO2007SO5/2/2018Black Balsam Trap 151793tissue	male								
GSMNPSO221SF10/18/20Purchase KnobGRSM1499TissueJuv, FSO 058SORoan1706tissueJuv, FSO 059SFRoan1877tissueJuv, F, rap 2SO 056SORoan1685tissueLinvilleGor ge3-8-1SO 198SO4/14/201Linville Gorge 3Inville1053Little Sam'sSO198SO4/14/201Little Sam's RoanBlack1690scatLittle Sam'sSO199SO4/14/201Little Sam's RoanBlack1694scatLittle Sam'sSO200SO4/14/201Little Sam's RoanBlack1696scatLittle Sam'sSO200SO4/14/201Little Sam's RoanBlack1696scatLittle Sam'sSO2007SO5/2/2018Black Balsam1696scatImage 1Little Sam'sSO209TSO5/2/2018Black Balsam1793tissueImage 1Black Black Black15Stasm1793tissueImage 1	GM14								
Juv, FSO 058SOInstanceRobinProvideProvid	GSMNP	SO221	SF	10/18/20	Purchase	GRSM	1499	Tissue	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ODINI (I	50221	~	18	Knob	Cright	1.77	110000	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Juv, F	SO 058	SO			Roan	1706	tissue	
Juv, F, Trap 2SO 056SOSORoan1685tissueImage: Solar section of the section	Juv, F	SO 059	SF			Roan	1877	tissue	
Trap 2Image: Constraint of the second se	Juv, F,	SO 056	SO			Roan	1685	tissue	
Linvine Gor ge3-8-1SO269SF11-reb- 19Linvine Gorge 3Linvine 10551055ScatLittle Sam's KnobSO198SO4/14/201 8Little Sam's 8Black Balsam1690scatImage: Scat medicineLittle Sam's KnobSO199SO4/14/201 8Little Sam's 8Black Balsam1694scatImage: Scat medicineLittle Sam's KnobSO200SO4/14/201 8Little Sam's KnobBlack Balsam1696scatImage: Scat medicineLittle Sam's KnobSO200SO4/14/201 8Little Sam's Black BalsamBlack Balsam1696scatImage: Scat medicineLittle Sam's KnobSO2007SO5/2/2018 15Black BalsamBlack Balsam1793tissueImage: Scat medicine	Trap 2	502(0	CE	11 E-h	T :	T ::11	1052		
Job of 1If and the sector of the	$re3_8_1$	50269	51	11-Feb- 19	Gorge 3	Linville	1053	scat	
Sam's KnobSO199 8SO4/14/201 8Little Sam's 	Little	SO198	SO	4/14/201	Little Sam's	Black	1690	scat	
KnobSO199SO4/14/201Little Sam's KnobBlack Balsam1694scatLittleSO200SO4/14/201Little Sam's KnobBlack Balsam1696scatLittleSO200SO4/14/201Little Sam's KnobBlack Balsam1696scatLittleSO200SO4/14/201Little Sam's KnobBlack Balsam1696scatLittleSO200SO4/14/201Little Sam's KnobBlack Balsam1696scatlivetrapSO209TSO5/2/2018Black Balsam Trap 15Black Balsam1793tissue	Sam's	50170		8	Knob	Balsam	1070	bout	
Little Sam's KnobSO 199 8SO 4/14/201 8Little Sam's KnobBlack Balsam1694scatLittle Sam's KnobSO200 8SO 4/14/201 8Little Sam's Little Sam's Black BalsamBlack Balsam1696scatLittle Sam's KnobSO200 8SO 84/14/201 8Little Sam's Black BalsamBlack Black Balsam1696scatlivetrap Black BalsamSO209T 15SO5/2/2018 15Black BalsamBlack Balsam1793tissue	Knob			-					
Sam's Knob8KnobBalsamImage: Constraint of the second secon	Little	SO199	SO	4/14/201	Little Sam's	Black	1694	scat	
KnobSO200SO4/14/201Little Sam's KnobBlack Balsam1696scatlivetrap Black BalsamSO209TSO5/2/2018Black Balsam Trap 15Black Balsam1793tissue	Sam's			8	Knob	Balsam			
LittleSO200SO4/14/201Little Sam'sBlack1696scatSam's8KnobBalsamKnob8KnobBlackBlacklivetrapSO209TSO5/2/2018BlackBlack1793tissueBlackBalsam15	Knob								
Sam's Knob8KnobBalsamIvetrapSO209TSO5/2/2018BlackBlack1793tissueBlack Balsam Trap151516179315	Little	SO200	SO	4/14/201	Little Sam's	Black	1696	scat	
KnobSO209TSO5/2/2018BlackBlack1793tissueBlackBlasam1515151793151616	Sam's			8	Knob	Balsam			
Black Balsam Trap	Knob	CO200T	50	5/2/2010	Dlash	Dlash	1702	tiggers	
Balsam Tran	Black	502091	50	5/2/2018	Black Balsam Tran	Black	1/93	ussue	
Trap	Balsam				15	Daisaili			
	Trap								

livetrap Cradle	SO168T	SO	3/14/201	Cradle of	Pisgah NF	1007	tissue	
livetrap	SO193T	SO	3/30/201	Cradle of	Pisgah NF	998	tissue	
Cradle			8	Forestry	0			
SYOB?								
female	0.0000		4/20/201		CDCL	1000		
livetrap	SO2031	so	4/20/201	Forney	GRSM	1777	tissue	
Ridge			0	GSMNP				
GSMNP				OSIMINI				
livetrap	SO212T	SO	5/13/201	Cradle of	Pisgah NF	1003	tissue	
SYOB			8	Forestry	-			
Cradle								
LookingGl	SO349	UND	20-Mar-	Looking	Looking	1053	scat	
ass1-10-1	50250		19 20 Mar	Glass I	Glass Rock	1052		
LOOKINGGI	50350	UND	20-Mar-	Close 1	LOOKING Glass Pock	1053	scat	
LookingGl	SO351	UND	20-Mar-	Looking	Looking	1103	scat	
ass2-3-1,	50551	OND	19	Glass 2	Glass Rock	1105	seat	
LookingGl	SO352	UND	20-Mar-	Looking	Looking	1103	scat	
ass2-3-2			19	Glass 2	Glass Rock			
MaxPatch1	SO272	SF	20-Feb-	Max Patch 1	Max Patch	1357	scat	
-3-1 Mar Datab2	50072	50	19 20 E-h	Man Datah 2	Mar Datah	1220		
-1-1	50275	50	20-Feb- 19	Max Patch 2	Max Patch	1320	scat	
MaxPatch2	SO274	SO	20-Feb-	Max Patch 2	Max Patch	1320	scat	
-3-1	0.0075		19 20 F 1			1070		
MaxPatch4	50275	50	20-Feb-	Max Patch 4	Max Patch	12/3	scat	
Mt	SO373	SO	9/24/201	Mt Mitchell	Black Mtns	1883	tissue	
Mitchell	20070	20	9	CG		1000		
Campgroun								
d CG15								
032 - tissue		~~						
NWOP2	SO143	SF	2/3/2018	Roan Mtn - NW bald	Roan	1873	scat	
NWOP3	SO144	SF	2/3/2018	Roan Mtn -	Roan	1878	scat	
				NW bald				
NWOPP1	SO142	SF	2/3/2018	Roan Mtn - NW bald	Roan	1871	scat	
OPP-2-A	SO170	SO	3/13/201	Devil's	Black	1671	scat	
Devil's			8	Courthouse -	Balsam			
Cthouse				Opportunisti				
OPP2-B	SO171	SO	3/13/201	Devil's	Black	1671	scat	
Devil's	551/1		8	Courthouse -	Balsam	10/1	Sout	
Cthouse				Opportunisti				
				c				
OPP2-C	SO172	SO	3/13/201	Devil's	Black	1671	scat	
Devil's			8	Courthouse -	Balsam		1	
Cthouse				Opportunisti				
OPP2-D	SO173	SO	3/13/201	Devil's	Black	1671	scat	
Devil's			8	Courthouse -	Balsam			
Cthouse								

				Opportunisti				
OppOakKn	SO355	UND	12-Mar-	c Unicoi	Unicois	1651	scat	
ob 1-1	20000	01.12	19	Mountains 9	Chicolo	1001	Sear	
Panthertow	SO331	SO	18-Mar-	Panthertown	Panthertow	1228	scat	
n1-1-1	00007		19	1	n	1220		
Panthertow	SO337	so	19-Mar-	Panthertown	Panthertow	1220	scat	
nii-i-i Donthartow	50228	50	19 10 Mar	11 Donthertown	Il Donthortow	1220	cont	
n11-6-1	30338	30	19-1viai- 19	11	n	1220	scal	
Panthertow	\$0339	SO	19-Mar-	Panthertown	Panthertow	1217	scat	
n12-2-1	50557	50	19	12	n	1217	bout	
Panthertow	SO340	SO	19-Mar-	Panthertown	Panthertow		scat	
n12-7-1			19	12	n			
Panthertow	SO332	SO	18-Mar-	Panthertown	Panthertow		scat	
n13-2-1			19	13	n			
Panthertow	SO333	SO	18-Mar-	Panthertown	Panthertow	1197	scat	
n13-6-1	~~~~	~ ~	19	13	n			
Panthertow	SO334	so	18-Mar-	Panthertown	Panthertow	1209	scat	
n14-2-1	50241	50	19 10 Mar	14 Donthortown	n Domthoritory	1101	aaat	
panulertow	50541	30	19-Mar- 10	15	Pantiertow	1191	scal	
Panthertow	\$0342	SO	19 19-Mar-	Panthertown	Panthertow	1191	scat	
n15-8-1	50542	50	19 Mai	15	n	1171	seat	
Panthertow	SO343	SO	19-Mar-	Panthertown	Panthertow	1219	scat	
n16-3-1	~ ~ ~ ~ ~ ~	~ ~	19	16	n			
Panthertow	SO344	SO	19-Mar-	Panthertown	Panthertow	1173	scat	
n17-10-1			19	17	n			
Panthertow	SO345	SO	19-Mar-	Panthertown	Panthertow	1156	scat	
n18-1-1	0.0046		19	18	n	1110		
Panthertow	SO346	so	19-Mar-	Panthertown	Panthertow	1142	scat	
III9-1-1 Dopthortow	\$0347	50	19 10 Mor	19 Donthortown	II Panthartow	1142	sont	
n19-4-1	30347	30	19-1viai- 19	19	n	1142	scal	
Panthertow	SO335	SO	19 18-Mar-	Panthertown	Panthertow	1263	scat	
n4-1-1	20000	20	19	4	n	1200	Sear	
Panthertow	SO336	SO	18-Mar-	Panthertown	Panthertow	1263	scat	
n4-2-1			19	4	n			
Pathertown	SO348	SO	19-Mar-	Panthertown	Panthertow	1217	scat	
12-4-1			19	12	n			
PinkBeds	SO353	UND	15-Jan-	Pink Beds		995	scat	
3-10-1	0.000	<u>ar</u>	19		D	1071		
R49-1	SO 030	SF			Roan	18/1	scat	
R49-1	SO 088	SF			Roan	18/1	scat	
R4930-1 R4950-2	SO 031	<u> </u>			Roan	1850	scat	
R4950-2	SO 032	UND			Roan	1845	scat	
R4950-4	SO 083	SO			Roan	1840	scat	
R4950-6	SO 035	SO			Roan	1853	scat	
R4950-7	SO 082	SO			Roan	1846	scat	
R4950-8	SO 081	SO			Roan	1840	scat	
R4950-9	SO 036	SF			Roan	1836	scat	
R5455-1	SO 075	SF			Roan	1885	scat	
R5455-2	SO 037	SF			Roan	1883	scat	

						1	1		
R5455-3	SO 073	SF			Roan	1882	scat		
R5455-3	SO 086	SF			Roan	1882	scat		
R5455-4	SO 074	SF			Roan	1881	scat		
R5455-4	SO 087	SF			Roan	1881	scat		
R5455-5	SO 038	SF			Roan	1881	scat		
R5455-6	SO 039	SF			Roan	1887	scat		
R5455-7	SO 040	SF			Roan	1888	scat		
RB1-1	SO 084	SO			Roan	1687	scat		
RB1-2	SO 076	SO			Roan	1682	scat		┥┫
RB1-3	SO 041	SO			Roan	1678	scat		
RB1-4	SO 042	SO			Roan	1670	scat		
RB1-5	SO 043	SE			Roan	1666	scat		
RB1-6	SO 043	50			Roan	1690	scat		
DD1-0	SO 077	50			Roan	1601	scat		
DD1 9	50 077	50			Roan	1604	scat		
RD1-0	50 078	<u>50</u>			Roan	1094	scat		
RB2-1	50 079	SF			Roan	1748	scat		
RB2-2	50 080	50			Roan	1/4/	scat	_	
RB2-3	SO 045	SF			Roan	1745	scat		
RB2-4	SO 046	SF			Roan	1745	scat		
RB2-5	SO 047	SF			Roan	1746	scat		
RB2-6	SO 048	SF			Roan	1749	scat		
RB2-7	SO 049	SF			Roan	1749	scat		
RHBT10	SO220T	UND	10/30/20	Roan Mtn	Roan	1886	Tissue		
151.090			18	Bluff					
Rhodo	SO415	SO	9/16/201	Rhodo	Roan	1741	tissue		
Garden			9	Garden					
Male 023									
Trap RG15									
Rhodo	SO421	SO	9/17/201	Rhodo	Roan	1893	tissue		
Garden			9	Garden					
SYOB									
male									
151.029									
trap RG19									
Rhodo	SO413	SO	9/8/2019	Rhodo	Roan	1857	tissue		
Gardens				Gardens					
female				Trap RG9					
TrapRG9									
Tag022									
Road Kill	SO227	SF	3/4/2019	NW of	Honeycutt,	858	Tissue		
Bunny				Bakersville	NC				
(Fork Mt									
Road)									
Roadkill	SO211	SF	5/7/2018	BRP Bluff	Blue Ridge	1017	tissue		
BRP Bluff				Mountain	Parkway				
Mtn				Overlook					
Roadkill	SO208	SF	5/1/2018	BRP Johns	Blue Ridge	1626	tissue		
BRP Johns				Rock	Parkway				
Rock				Overlook					
Roadkill	SO215	SO	6/22/201	BRP	Looking	1372	tissue		
BRP			8	Looking	Glass				
Looking				Glass					
				Overlook	1	1			

Roadkill BRP Stoney Fork	SO210	SF	5/7/2018	BRP Stoney Fork Overlook (MP 278)	Blue Ridge Parkway	1047	tissue	
Roadkill Cherokee	SO201	SF	4/19/201 8	Cherokee	Cherokee	600	tissue	
Roadkill Clingman's Road	SO213	SO	5/24/201 8	Clingman's Dome Rd, GSMNP	GRSM	1783	tissue	
Roadkill Cradle	SO214	SF	5/24/201 8	Cradle of Forestry	Pisgah NF	998	tissue	
Roan Loop SYOB female 150.629 trap RL20	SO420	SO	9/16/201 9	Roan Loop	Roan	1867	tissue	
Round Bald female SYFL 021 Trap RB2	SO419	SF	9/17/201 9	Round Bald	Roan	1682	tissue	
Round Bald female SYFL 024 Trap 14	SO417	SF	9/17/201 9	Round Bald	Roan	1741	tissue	
Round Bald female Tag023 Trap 14	SO412	SF	16-Sep- 19	Round Bald Trap 14	Roan	1741	tissue	
Round Bald male SYFL Trap RB14 Tag 018	SO418	SF	9/9/2019	Round Bald	Roan	1884	tissue	
Round Bald SYFL male Tag 019 Trap 15	SO423	SF	9/16/201 9	Round Bald	Roan	1739	tissue	
Sandy Mush 1A-1	SO185	SO	3/15/201 8	Sandy Mush 1A pt #9	Sandy Mush	600	scat	
Sandy Mush 1A-2	SO186	SO	3/15/201 8	Sandy Mush 1A pt #2	Sandy Mush	600	scat	
Sandy Mush 1A-8	SO187	SO	3/15/201 8	Sandy Mush 1A pt #8	Sandy Mush	590	scat	
Sandy Mush 1A-8	SO188	SO	3/15/201 8	Sandy Mush 1A pt #8	Sandy Mush	590	scat	
SouthMoun tainGamela nds10-6-1	SO277	SO	25-Feb- 19	South Mountain Gamelands 10	South Mountains	762	scat	

SouthMoun tainGamela nds11-1-1	SO279	SO	25-Feb- 19	South Mountain Gamelands 11	South Mountains	877	scat	
SouthMoun tainGamela nds11-10-1	SO278	SO	25-Feb- 19	South Mountain Gamelands 11	South Mountains	877	scat	
SouthMoun tainGamela nds11-2-1	SO280	SO	25-Feb- 19	South Mountain Gamelands 11	South Mountains	877	scat	
SouthMoun tainGamela nds4-4-1	SO276	SO	21-Feb- 19	South Mountain Gamelands 4	South Mountains	383	scat	
SouthMoun tainGamela nds7-1-1	SO281	SO	25-Feb- 19	South Mountain Gamelands 7	South Mountains	742	scat	
SR-01	SO 050	SO			Black Balsam	1793	scat	
SR-01	SO 085	SO			Roan	1793	scat	
Stepp's Gap RS8 151.431 - tissue	SO370	SO	9/25/201 9	Stepp's Gap Mt Mitchell	Black Mtns	1846	tissue	
SYOB Road Kill (Rt 64, East of Rosman)	SO407	SF	Unknow n	? Road Kill	Lake Toxaway	840	tissue	
Tollhouse Gap Roan female 670	SO414	SF	9/6/2019	Tollhouse Gap Roan	Roan	1877	tissue	
Tollhouse Gap SYOB female 151.369 trap TG4	SO422	SO	9/17/201 9	Tollhouse Gap Roan	Roan	1871	tissue	
Trap CF1 151.009	SO228T	SO	11/20/20 18	Cradle of Forestry	Pisgah NF	1006	tissue	
Trap CF1 151.209	SO225	SO	11/3/201 8	Cradle of Forestry	Pisgah NF	1006	Tissue	
Trap CF15 150.809	SO224	SO	11/3/201 8	Cradle of Forestry	Pisgah NF	998	Tissue	
Trap CF7 151.169	SO226	SO	11/3/201 8	Cradle of Forestry	Pisgah NF	995	Tissue	
Trap PBP3 017	SO231T	SO	11/26/20 18	Pink Beds Picnic	Pisgah NF	998	tissue	
Trap RG14	SO216T	SF	10/25/20 18	Rhodo Garden - Roan Mtn.	Roan	1857	Tissue	

Trap RG20 151.229	SO222	SO	10/31/20 18	Rhodo Garden - Roan Mtn	Roan	1885	Tissue	
UnicoiMou ntains1-1-1	SO325	SO	12-Mar- 19	Unicoi Mountains 1	Unicois		scat	
UnicoiMou ntains10-8- 1	SO324	SO	12-Mar- 19	Unicoi Mountains 10	Unicois	1686	scat	
UnicoiMou ntains2-5-1	SO326	SO	12-Mar- 19	Unicoi Mountains 2	Unicois		scat	
UnicoiMou ntains2-8-1	SO327	SO	12-Mar- 19	Unicoi Mountains 2	Unicois		scat	
UnicoiMou ntains6-1-1	SO328	SO	12-Mar- 19	Unicoi Mountains 6	Unicois		scat	
UnicoiMou ntains6-2-1	SO329	SO	12-Mar- 19	Unicoi Mountains 6	Unicois		scat	
UnicoiMou ntains8-5-1	SO330	SO	12-Mar- 19	Unicoi Mountains 8	Unicois	1645	scat	
WC-4	SO148	SO	2/3/2018	Roan Mtn - WC spruce- fir	Roan	1824	scat	
WC8	SO149	SO	2/3/2018	Roan Mtn - WC spruce- fir	Roan	1815	scat	
WCOP1	SO145	SO	2/3/2018	Roan Mtn - WC spruce- fir	Roan	1834	scat	
WCOP2	SO146	SF	2/3/2018	Roan Mtn - WC spruce- fir	Roan	1833	scat	
WCOP3	SO147	SO	2/3/2018	Roan Mtn - WC spruce- fir	Roan	1823	scat	
Wet Devil's Cthouse- 9A	SO181	SO	3/13/201 8	Wet Devil's Cthouse-9A	Black Balsam	1668	scat	
Wet Devil's Cthouse- 9B	SO182	SO	3/13/201 8	Wet Devil's Cthouse-9B	Black Balsam	1668	scat	
Wet Devil's Cthouse- 9C	SO183	SO	3/13/201 8	Wet Devil's Cthouse-9C	Black Balsam	1668	scat	